The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water. a. What is the resistance between the hands if the skin resistance is negligible? b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water. a. What is the resistance between the hands if the skin resistance is negligible? b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water.
a. What is the resistance between the hands if the skin resistance is negligible?
b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 22 Solutions
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY