
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 2P
2.0 × 1013 electrons flow through a transistor in 1.0 ms. What is the current through the transistor?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
a)
What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless.
T =
b)
If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg?
mm =
Curve Fitter
CURVE FITTER
Open
Update Fit
Save
New
Exclusion Rules
Select Validation Data
Polynomial Exponential Logarithmic
Auto
Fourier
Fit
Fit
Duplicate Data
Manual
FILE
DATA
FIT TYPE
FIT
Harmonic Motion X
us
0.45
mi
ce
0.4
0.35
0.3
0.25
0.2
Residuals Plot
Contour Plot
Plot Prediction Bounds None
VISUALIZATION
Colormap Export
PREFERENCES EXPORT
Fit Options
COA Fourier
Equation
Fit Plot
x vs. t
-Harmonic Motion
a0+ a1*cos(x*w) +
b1*sin(x*w)
Number of terms
Center and scale
1
▸ Advanced Options
Read about fit options
Results
Value
Lower
Upper
0.15
a0
0.1586
0.1551
0.1620
a1
0.0163
0.0115
0.0211
0.1
b1
0.0011
-0.0093
0.0115
W
1.0473
0.9880
1.1066
2
8
10
t
12
14
16
18
20
Goodness of Fit
Value
Table of Fits
SSE
0.2671
Fit State Fit name
Data
Harmonic Motion x vs. t
Fit type
fourier1
R-square
0.13345
SSE
DFE
0.26712
296
Adj R-sq
0.12467
RMSE
0.030041
# Coeff
Valic
R-square
0.1335
4
DFE
296.0000
Adj R-sq
0.1247
RMSE
0.0300
What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?
Chapter 22 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 22 - What causes electrons to move through a wire as a...Ch. 22 - All wires in Figure Q22.519 are made of the same...Ch. 22 - A wire carries a 4 A current. What is the current...Ch. 22 - Prob. 7CQCh. 22 - Cells in the nervous system have a potential...Ch. 22 - a. Which directionclockwise or...Ch. 22 - Prob. 10CQCh. 22 - The wires in Figure Q22.11 are all made of the...Ch. 22 - The two circuits in Figure Q22.12 use identical...Ch. 22 - The two circuits in Figure Q22.13 use identical...
Ch. 22 - Rank in order, from largest to smallest, the...Ch. 22 - The circuit in Figure Q22.16 has three batteries...Ch. 22 - When lightning strikes the ground, it generates a...Ch. 22 - One way to find out if a wire has corroded is to...Ch. 22 - Over time, atoms boil off the hot filament in an...Ch. 22 - Rank in order, from largest to smallest, the...Ch. 22 - A 100 W lightbulb is brighter than a 60 W...Ch. 22 - Lightbulbs are typically rated by their power...Ch. 22 - Lightbulbs are typically rated by their power...Ch. 22 - A copper wire is stretched so that its length...Ch. 22 - The potential difference across a length of wire...Ch. 22 - A stereo amplifier creates a 5.0 V potential...Ch. 22 - A resistor connected to a 3.0 V battery dissipates...Ch. 22 - If a 1.5 V battery stores 5.0 kJ of energy (a...Ch. 22 - Figure Q22.29 shows a side view of a wire of...Ch. 22 - A person gains weight by adding fatand therefore...Ch. 22 - The current in an electric hair dryer is 10 A. How...Ch. 22 - 2.0 1013 electrons flow through a transistor in...Ch. 22 - Three wires meet at a junction. Wire 1 has a...Ch. 22 - When a nerve cell depolarizes, charge is...Ch. 22 - A wire carries a 15 A current. How many electrons...Ch. 22 - In a typical lightning strike, 2.5 C flows from...Ch. 22 - A capacitor is charged to 6.0 104 C, then...Ch. 22 - In an ionic solution, 5.0 1015 positive ions with...Ch. 22 - The starter motor of a car engine draws a current...Ch. 22 - A car battery is rated at 90 A h, meaning that it...Ch. 22 - What are the values of currents IB and IC in...Ch. 22 - The currents through several segments of a wire...Ch. 22 - How much electric potential energy does 1.0 C of...Ch. 22 - What is the emf of a battery that increases the...Ch. 22 - A 9.0 V battery supplies a 2.5 mA current to a...Ch. 22 - An individual hydrogen-oxygen fuel cell has an...Ch. 22 - An electric catfish can generate a significant...Ch. 22 - A Wire with resistance R is connected to the...Ch. 22 - Wires 1 and 2 are made of the same metal. Wire 2...Ch. 22 - Prob. 20PCh. 22 - Resistivity measurements on the leaves of corn...Ch. 22 - What is the resistance of a. A 1.0-m-long copper...Ch. 22 - A motorcyclist is making an electric vest that,...Ch. 22 - Prob. 24PCh. 22 - A 3.0 V potential difference is applied between...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - The aluminum wire in a high-voltage transmission...Ch. 22 - Figure P22.29 shows the...Ch. 22 - Figure P22.30 is a...Ch. 22 - In Example 22.6 the length of a 60 W, 240 ...Ch. 22 - The electric field inside a 30-cm-long copper wire...Ch. 22 - A copper wire is 1.0 mm in diameter and carries a...Ch. 22 - Two identical lightbulbs are connected in series...Ch. 22 - A 1.5 V battery moves 2000 C of charge around a...Ch. 22 - a. What is the resistance of a 1500 W (120 V) hair...Ch. 22 - Every second, a battery increases the electric...Ch. 22 - A 70 W electric blanket runs at 18 V. a. What is...Ch. 22 - A 60-cm-long heating wire is connected to a 120 V...Ch. 22 - An electric eel develops a potential difference of...Ch. 22 - The total charge a household battery can supply is...Ch. 22 - A 3.0 V battery powers a flashlight bulb that has...Ch. 22 - A heating element in a toaster dissipates 900 W...Ch. 22 - Older freezers developed a coating of ice inside...Ch. 22 - The hot dog cooker described in the chapter heats...Ch. 22 - Air isnt a perfect electric insulator, but it has...Ch. 22 - The biochemistry that takes place inside cells...Ch. 22 - High-resolution measurements have shown that an...Ch. 22 - When an ion channel opens in a cell wall (see...Ch. 22 - The total charge a battery can supply is rated in...Ch. 22 - A 1.5 V D-cell battery is rated at 15,000 mA h...Ch. 22 - The heating element of a simple heater consists of...Ch. 22 - Variations in the resistivity of blood can give...Ch. 22 - A 40 W (120 V) lightbulb has a tungsten filament...Ch. 22 - Wires arent really ideal. The voltage drop across...Ch. 22 - When the starter motor on a car is engaged, there...Ch. 22 - The electron beam inside a television picture tube...Ch. 22 - The two segments of the wire in Figure P22.59 have...Ch. 22 - A long wire used as a heating element carries a...Ch. 22 - Prob. 61GPCh. 22 - Prob. 62GPCh. 22 - Prob. 63GPCh. 22 - If resistors 1 and 2 are connected to identical...Ch. 22 - An immersion heater used to boil water for a...Ch. 22 - The graph in Figure P22.66 shows the current...Ch. 22 - Its possible to estimate the percentage of fat in...Ch. 22 - If you touch the two terminals of a power supply...Ch. 22 - The average resistivity of the human body (apart...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...Ch. 22 - MCAT-Style Passage Problems Lightbulb Failure...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why would it be impossible for organisms to grow at 200 or 300C?
Brock Biology of Microorganisms (15th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
WRITE ABOUT A THEME: INTERACTIONS In Batesian mimicry, a palatable species gains protection by mimicking an unp...
Campbell Biology (11th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
43. A 10?F capacitor initially charged to 20?C is discharged through a 1.0 k? resistor. How long does it take t...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forwardi need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forward
- Review the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forwardPlease solve and answer the problem step by step with explanations along side each step stating what's been done correctly please. Thank you!! ( preferably type out everything)arrow_forwardAnswer thisarrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forward
- No chatgpt pls will upvotearrow_forward4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY