The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water. a. What is the resistance between the hands if the skin resistance is negligible? b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water. a. What is the resistance between the hands if the skin resistance is negligible? b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
The average resistivity of the human body (apart from surface resistance of the skin) is about 5.0 Ω · m. The conducting path between the right and left hands can be approximated as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water.
a. What is the resistance between the hands if the skin resistance is negligible?
b. If skin resistance is negligible, what potential difference between the hands is needed for a lethal shock current of 100 mA? Your result shows that even small potential differences can produce dangerous currents when skin is damp.
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Chapter 22 Solutions
College Physics: A Strategic Approach (3rd Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY