
(a)
What is the intensity of light exiting the last polarizer?
(a)

Answer to Problem 62P
The intensity of light exiting the last polarizer is
Explanation of Solution
The light is un-polarized at first. When an un-polarized light is passed through a polarizer, its intensity becomes half of the initial.
Write the equation to find the intensity of light from first polarizer.
Here,
Write the equation to find the intensity of light coming from second polarizer.
Here,
Write the equation to find the intensity of light coming from third polarizer.
Here,
Conclusion
Substitute
Substitute
Therefore, The intensity of light exiting the last polarizer is
(b)
What is the intensity of light exiting the last polarizer if the light is incident vertically from left?
(b)

Answer to Problem 62P
The intensity of light exiting the last polarizer is
Explanation of Solution
Here the light has the same polarization as the first ideal polarizer; there will be no change in intensity for light that passes the first polarizer.
Write the equation to find the intensity of light coming from second polarizer.
Write the equation to find the intensity of light coming from third polarizer.
Conclusion:
Substitute
Substitute
Therefore, The intensity of light exiting the last polarizer is
(c)
Can one polarizer be removed from this series of filters so that light incident from the left is not transmitted at all if un-polarized light is incident as in part a? If so, which one should be removed and answer same questions for vertically polarized incident light as in part b.
(c)

Answer to Problem 62P
Yes, polarizer can be removed. In both cases remove the middle polarizer.
Explanation of Solution
In both the cases in part a and part b the light is vertically polarized. The angle of polarization between the first and last polarizers is
Conclusion:
Therefore, yes, polarizer can be removed. In both cases remove the middle polarizer.
(d)
Which polarizer should be removed to maximize the amount of light transmitted in part a?
(d)

Answer to Problem 62P
In case a first polarizer should be removed and in case b last polarizer should be removed.
Explanation of Solution
Consider case a.
Write the equation to find the intensity if the first polarizer is removed.
Write the equation to find the intensity if the last polarizer is removed.
Consider part b.
Write the equation to find the intensity if the first polarizer is removed.
Here,
Write the equation to find the intensity if the last polarizer is removed.
Here,
Conclusion:
Substitute
Substitute
Here for maximum intensity first polarizer should be removed.
Substitute
Substitute
Here for maximum intensity last polarizer shall be removed.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics
- A man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forwardA golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forward
- A particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forwardneed answer asap please thank youarrow_forward3. a. Determine the potential difference between points A and B. b. Why does point A have a higher potential energy? Q = +1.0 C 3.2 cm 4.8 cm Aarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





