Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 22, Problem 63P

(a)

To determine

The frequency of EM wave with wavelength as the size of the thickness of a piece of paper.

(a)

Expert Solution
Check Mark

Answer to Problem 63P

The frequency of EM wave with wavelength as the size of the thickness of a piece of paper is 5.0×1012Hz

Explanation of Solution

Write an expression for the frequency of EM wave with wavelength as the size of the thickness of a piece of paper.

  f=cλ                                                                                                                      (I)

Here, f is the frequency, c is the speed of light and λ is the wavelength.

Conclusion:

Substitute 3.0×108m/s for c and 60μm for λ in equation (I) to find f.

    f=3.0×108m/s(60μm)(1m106μm)=3.0×108m/s60×106m=5.0×1012Hz

Thus, the frequency of EM wave with wavelength as size of the thickness of a piece of paper is 5.0×1012Hz

(b)

To determine

The frequency of EM wave with wavelength as the size of the length of a soccer field.

(b)

Expert Solution
Check Mark

Answer to Problem 63P

The frequency of EM wave with wavelength as the size of the length of a soccer field is 3.3×106Hz

Explanation of Solution

Write an expression for the frequency of EM wave with wavelength as the size of the length of a soccer field.

  f=cλ                                                                                                                     (II)

Conclusion:

Substitute 3.0×108m/s for c and 91m for λ in equation (II) to find f.

    f=3.0×108m/s91m=3.3×106Hz

Thus, the frequency of EM wave with wavelength the size of as the length of a soccer field is 3.3×106Hz.

(c)

To determine

The frequency of EM wave with wavelength as the size of diameter of Earth.

(c)

Expert Solution
Check Mark

Answer to Problem 63P

The frequency of EM wave with wavelength as the size of diameter of Earth is 23.5Hz

Explanation of Solution

Write an expression for the frequency of EM wave with wavelength as the size of diameter of Earth.

  f=cλ                                                                                                                     (III)

Conclusion:

Substitute 3.0×108m/s for c and 2(6.371×106m) for λ in equation (III) to find f.

    f=3.0×108m/s2(6.371×106m)=3.0×108m/s12.742×106m=23.5Hz

Thus, the frequency of EM wave with wavelength as the size of diameter of Earth is 23.5Hz

(d)

To determine

The frequency of EM wave with wavelength the size of the distance from Earth to Sun.

(d)

Expert Solution
Check Mark

Answer to Problem 63P

The frequency of EM wave with wavelength the size of the distance from Earth to Sun is 2.00×103Hz

Explanation of Solution

Write an expression for the frequency of EM wave with wavelength the size of the thickness of distance from Earth to Sun.

  f=cλ                                                                                                                    (IV)

Conclusion:

Substitute 3.0×108m/s for c and 1.50×1011m for λ in equation (IV) to find f.

    f=3.0×108m/s1.50×1011m=2.00×103Hz

Thus, the frequency of EM wave with wavelength the size of the distance from Earth to Sun is 2.00×103Hz

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
No chatgpt pls will upvote

Chapter 22 Solutions

Physics

Ch. 22.7 - Prob. 22.7PPCh. 22.7 - Prob. 22.8PPCh. 22.8 - Prob. 22.9PPCh. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Prob. 8CQCh. 22 - Prob. 9CQCh. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - Prob. 15CQCh. 22 - Prob. 1MCQCh. 22 - Prob. 2MCQCh. 22 - Prob. 3MCQCh. 22 - Prob. 4MCQCh. 22 - 5. If the wavelength of an electromagnetic wave is...Ch. 22 - Prob. 6MCQCh. 22 - 7. A dipole radio transmitter has its rod-shaped...Ch. 22 - Prob. 8MCQCh. 22 - Prob. 9MCQCh. 22 - Prob. 10MCQCh. 22 - Prob. 1PCh. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - 6. What is the wavelength of the radio waves...Ch. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Prob. 9PCh. 22 - Prob. 10PCh. 22 - Prob. 12PCh. 22 - 12. In order to study the structure of a...Ch. 22 - Prob. 13PCh. 22 - 14. When the NASA Rover Spirit successfully landed...Ch. 22 - Prob. 15PCh. 22 - 16. You and a friend are sitting in the outfield...Ch. 22 - Prob. 14PCh. 22 - Prob. 18PCh. 22 - Prob. 17PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - Prob. 23PCh. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Prob. 29PCh. 22 - 30. The intensity of the sunlight that reaches...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - 36. The intensity of the sunlight that reaches...Ch. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - Prob. 43PCh. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 62PCh. 22 - Prob. 61PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - Prob. 66PCh. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Prob. 71PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 80PCh. 22 - Prob. 82PCh. 22 - Prob. 79PCh. 22 - Prob. 81PCh. 22 - Prob. 84PCh. 22 - Prob. 83PCh. 22 - Prob. 86PCh. 22 - Prob. 85P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY