
Concept explainers
(a)
Interpretation: For the given complex the oxidation number has to be determined.
Concept introduction: The
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.
(b)
Interpretation: For the given complex the coordination number has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds.
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.
(c)
Interpretation: For the given complex the coordination geometry has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds.
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.
(d)
Interpretation: For the given complex the unpaired electrons has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds.
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.
(e)
Interpretation: For the given complex the magnetic behavior of the central metal atom has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds.
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.
(f)
Interpretation: For the given complex the geometric isomers of the central metal atom has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds.
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions.
Ligands: The ions or molecules that forms coordination covalent bond with metal ions in a coordination compound. Ligands should have minimum one lone pair of electron, where it donates two electrons to the metal. Metal atom accepts the electron pair from a ligand forming a coordination bond.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Oxidation number: It is the number that defines the number of electrons that are gained or lost by the chemical substance.
Isomerism: Two chemical compounds are said to be isomers if they have same number and kind of atoms but different only in their orientation that is structural arrangements.
There are different types of isomerism in which geometric is of one type where the rotation around the atom is restricted like in cis-trans configuration. This is also refereed as cis-trans isomerism.

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forward
- Indicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





