Concept explainers
(a)
Interpretation: The electronic configuration, magnetic character and the number of unpaired electrons for the given set of high spin tetrahedral complexes has to be determined.
Concept introduction: The
The properties of the coordination compounds depend upon the primary and secondary valancy of the metal ion in the coordination sphere. The electrical conductivity depends upon the number of ions that are produced by complex.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
(b)
Interpretation: The electronic configuration, magnetic character and the number of unpaired electrons for the given set of high spin tetrahedral complexes has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds. There exists a large number of coordination compounds that have a large number of applications in the chemical industry as well as in daily life.
The properties of the coordination compounds depend upon the primary and secondary valancy of the metal ion in the coordination sphere. The electrical conductivity depends upon the number of ions that are produced by complex.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
(c)
Interpretation: The electronic configuration, magnetic character and the number of unpaired electrons for the given set of high spin tetrahedral complexes has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds. There exists a large number of coordination compounds that have a large number of applications in the chemical industry as well as in daily life.
The properties of the coordination compounds depend upon the primary and secondary valancy of the metal ion in the coordination sphere. The electrical conductivity depends upon the number of ions that are produced by complex.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
(d)
Interpretation: The electronic configuration, magnetic character and the number of unpaired electrons for the given set of high spin tetrahedral complexes has to be determined.
Concept introduction: The transition metal atoms have tendency to form complex compounds that are linked to the certain neutral or ionic species which leads to the formation of coordination compounds. There exists a large number of coordination compounds that have a large number of applications in the chemical industry as well as in daily life.
The properties of the coordination compounds depend upon the primary and secondary valancy of the metal ion in the coordination sphere. The electrical conductivity depends upon the number of ions that are produced by complex.
The strong-field ligands results in pairing of electrons present in the complex and leads to diamagnetic species , while the low-field ligand do not have tendency to pair up the electrons therefore forms paramagnetic species.
The strong field ligands lead to splitting to a higher extent than the weak field ligands and the wavelength of light absorbed depends on the energy gap that is produced by a particular ligand.
The five d orbitals get divided into two sets that is
Electronic configuration: It is defined as the distribution of electrons present in the atom over orbitals following certain rules like electrons starts filling the lower energy orbital to higher energy, pairing of electrons does not occur until all the orbitals are singly filled and finally no electrons present in orbital can have same set of quantum numbers.
Trending nowThis is a popular solution!
Chapter 22 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- A gas following mole compositions at 120 \deg F, 13.8 psia. N2% 2, CH 4% 79C2H6 % 19. Volume fractionn?arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardOrder-disorder phenomenaa) do not have conductive properties.b) are cooperative.c) have few industrial implications.arrow_forward
- Unshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forwardDraw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning