![CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<](https://www.bartleby.com/isbn_cover_images/9781305020788/9781305020788_largeCoverImage.gif)
(a)
Interpretation The dimensions species
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Equation for density is,
(b)
Interpretation The density of austenite unit cell has to be determined.
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Equation for density is,
(c)
Interpretation
Concept introduction:
Coordination compounds: The compounds having coordination covalent bonds which form when metal ions react with polar molecules or anions
Ligand field theory: It is used to explain the bonding between metal and ligand in a coordination complex. Ligand field theory is explained in terms of electrostatic interaction of between metal ion and ligands.
Electronic configuration shows the electrons distribution of atoms or molecule in its molecular or atomic orbitals. The electrons are distributed in orbitals by following three important rules, Aufbau's Principle, Pauli-exclusion principle, and Hund's Rule.
If the complex has minimum one unpaired electron, then they are paramagnetic and are attracted towards the magnetic field. If all the electrons are paired in a complex, then they are diamagnetic and are repelled from the magnetic field.
Equation for density is,
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 22 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- Nonearrow_forward4. Experimental Procedure. a. How many (total) data plots are to be completed for this experiment? Account for each. b. What information is to be extracted from each data plot?arrow_forwardProvide the IUPAC name of the following molecule. Don't forget to include the proper stereochemistry where appropriate.arrow_forward
- 3. 2. 1. On the graph below, plot the volume of rain in milliliters versus its height in centimeters for the 400 mL beaker. Draw a straight line through the points and label it "400 mL beaker." Volume (mL) 400 350 300 250 200 150 750 mL Florence Volume Versus Height of Water 400 mL beaker 100 50 0 0 2 3 4 5 Height (cm) 6 7 8 9 10 Explain why the data points for the beaker lie roughly on a straight line. What kind of relationship is this? How do you know? (see page 276 text) the design of the beaker is a uniform cylinder the volume of liquid increases evenly with its height resulting in a linear relationship. What volume would you predict for 10.0 cm of water? Explain how you arrived at your answer. Use the data table and the graph to assist you in answering the question. 4. Plot the volume of rain in milliliters versus its height in centimeters for the 250 mL Florence flask on the same graph. Draw a best-fit curve through the points and label it "250 mL Florence flask." oke camearrow_forwardShow work. Don't give Ai generated solutionarrow_forwardIn the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengthsarrow_forward
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)