University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 22.9DQ
In a conductor, one or more electrons from each atom are free to roam throughout the volume of the conductor. Does this contradict the statement that any excess charge on a solid conductor must reside on its surface? Why or why not?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spherical metallic object with a hole inside initially holds a net
charge of 94.9 nC; the hole is initially charge-free. Then a particle with
a charge of 26.1 nC is placed at the center of the hole (held by a perfect
non-polarizable insulating material). The value of the net charge on the
outer surface of the conductor, upon reaching electrostatic equilibrium, is
most nearly
(A) –68.8 nC.
(B) –121 nC.
(C) 68.8 nC.
(D) 42.7 nC.
(E) 121 nC.
Four identical metallic spheres with charges of +9.0 μC, +6.6 µC, -1.8 μC, and -5.2 μC are placed on a piece of paper. The paper is lifted on all corners so that the spheres come into contact with
each other simultaneously. The paper is then flattened so that the metallic spheres become separated.
(a) What is the resulting charge on each sphere?
UC
(b) How many excess or absent electrons (depending on the sign of your answer to part (a)) correspond to the resulting charge on each sphere?
electrons ar ✔ ---Sele---
absent
in excess
Four identical metallic spheres with charges of +1.4 μC, +1.8 μC, -5.8 μC, and -5.2 μC are placed on a piece of paper. The paper is lifted on all corners so that the spheres come into contact with
each other simultaneously. The paper is then flattened so that the metallic spheres become separated.
(a) What is the resulting charge on each sphere?
μC
(b) How many excess or absent electrons (depending on the sign of your answer to part (a)) correspond to the resulting charge on each sphere?
electrons are ---Select---
Chapter 22 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 22.1 - If all of the dimensions of the box in Fig. 22.2a...Ch. 22.2 - Rank the following surfaces in order from most...Ch. 22.3 - Figure 22.16 shows six point charges that all lie...Ch. 22.4 - You place a known amount of charge Q on the...Ch. 22.5 - A hollow conducting sphere has no net charge....Ch. 22 - A rubber balloon has a single point charge in its...Ch. 22 - Suppose that in Fig. 22.15 both charges were...Ch. 22 - In Fig. 22.15, suppose a third point charge were...Ch. 22 - A certain region of space bounded by an imaginary...Ch. 22 - A spherical Gaussian surface encloses a point...
Ch. 22 - You find a sealed box on your doorstep. You...Ch. 22 - A solid copper sphere has a net positive charge....Ch. 22 - A spherical Gaussian surface encloses a point...Ch. 22 - In a conductor, one or more electrons from each...Ch. 22 - You charge up the Van de Graaff generator shown in...Ch. 22 - Lightning is a flow of electrons. The lightning...Ch. 22 - A solid conductor has a cavity in its interior....Ch. 22 - Explain this statement: In a static situation, the...Ch. 22 - In a certain region of space, the electric field E...Ch. 22 - (a) In a certain region of space, the volume...Ch. 22 - A negative charge Q is placed inside the cavity of...Ch. 22 - A flat sheet of paper of area 0.250 m2 is oriented...Ch. 22 - A flat sheet is in the shape of a rectangle with...Ch. 22 - You measure an electric field of 1.25 106 N/C at...Ch. 22 - It was shown in Example 21.10 (Section 21.5) that...Ch. 22 - A hemispherical surface with radius r in a region...Ch. 22 - The cube in Fig. E22.6 has sides of length L =...Ch. 22 - BIO As discussed in Section 22.5, human nerve...Ch. 22 - The three small spheres shown in Fig. E22.8 carry...Ch. 22 - A charged paint is spread in a very thin uniform...Ch. 22 - A point charge q1 = 4.00 nC is located on the...Ch. 22 - A 6.20 C point charge is at the center of a cube...Ch. 22 - Electric Fields in an Atom. The nuclei of large...Ch. 22 - Two very long uniform lines of charge are parallel...Ch. 22 - A solid metal sphere with radius 0.450 m carries a...Ch. 22 - How many excess electrons must be added to an...Ch. 22 - Some planetary scientists have suggested that the...Ch. 22 - A very long uniform line of charge has charge per...Ch. 22 - The electric field 0.400 m from a very long...Ch. 22 - A hollow, conducting sphere with an outer radius...Ch. 22 - (a) At a distance of 0.200 cm from the center or a...Ch. 22 - The electric field at a distance of 0.145 m from...Ch. 22 - A point charge of 3.00 C is located in the center...Ch. 22 - CP An electron is released from rest at a distance...Ch. 22 - Charge Q is distributed uniformly throughout the...Ch. 22 - A conductor with an inner cavity, like that shown...Ch. 22 - A very large, horizontal, nonconducting sheet of...Ch. 22 - Apply Gausss law to the Gaussian surfaces S2, S3,...Ch. 22 - A square insulating sheet 80.0 cm on a side is...Ch. 22 - An infinitely long cylindrical conductor has...Ch. 22 - Two very large, nonconducting plastic sheets, each...Ch. 22 - CP At time t = 0 a proton is a distance of 0.360 m...Ch. 22 - CP A very small object with mass 8.20 109 kg and...Ch. 22 - CP A small sphere with mass 4.00 106 kg and...Ch. 22 - A cube has sides of length L = 0.300 m. One corner...Ch. 22 - The electric field E in Fig. P22.35 is everywhere...Ch. 22 - CALC In a region of space there is an electric...Ch. 22 - The electric field E1 at one face of a...Ch. 22 - A long line carrying a uniform linear charge...Ch. 22 - The Coaxial Cable. A long coaxial cable consists...Ch. 22 - A very long conducting tube (hollow cylinder) has...Ch. 22 - A very long, solid cylinder with radius R has...Ch. 22 - A Sphere in a Sphere. A solid conducting sphere...Ch. 22 - A solid conducting sphere with radius R that...Ch. 22 - A conducting spherical shell with inner radius a...Ch. 22 - Concentric Spherical Shells. A small conducting...Ch. 22 - Repeat Problem 22.45, but now let the outer shell...Ch. 22 - Prob. 22.47PCh. 22 - A solid conducting sphere with radius R carries a...Ch. 22 - CALC An insulating hollow sphere has inner radius...Ch. 22 - CP Thomsons Model of the Atom. Early in the 20th...Ch. 22 - Thomsons Model of the Atom, Continued. Using...Ch. 22 - (a) How many excess electrons must be distributed...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - A Uniformly Charged Slab. A slab of insulating...Ch. 22 - CALC A Nonuniformly Charged Slab. Repeat Problem...Ch. 22 - CALC A nonuniform, but spherically symmetric,...Ch. 22 - (a) An insulating sphere with radius a has a...Ch. 22 - A very long, solid insulating cylinder has radius...Ch. 22 - DATA In one experiment the electric field is...Ch. 22 - DATA The electric field is measured for points at...Ch. 22 - DATA The volume charge density for a spherical...Ch. 22 - CP CALC A region in space contains a total...Ch. 22 - Suppose that to repel electrons in the radiation...Ch. 22 - What is the magnitude of E just outside the...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...Ch. 22 - SPACE RADIATION SHIELDING. One of the hazards...
Additional Science Textbook Solutions
Find more solutions based on key concepts
You touch a defective appliance while standing on the ground, and you feel the tingle of a 2.5-mA current. What...
Essential University Physics (3rd Edition)
The maximum speed of wing tip of dragonfly.
College Physics: A Strategic Approach (3rd Edition)
The electric field on the surface of a 10-cm-diameter sphere is perpendicular to the sphere and has magnitude 4...
Essential University Physics: Volume 2 (3rd Edition)
8.54 A 1200-kg SUV is moving along a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20....
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
The circuit at tight contains three identical bulbs and an ideal battery. Assume that the resistance of the swi...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardFour identical metallic spheres with charges of +9.0 µC, +2.6 µC, -3.4 µC, and -7.2 µC are placed on a piece of paper. The paper is lifted on all corners so that the spheres come into contact with each other simultaneously. The paper is then flattened so that the metallic spheres become separated. (a) What is the resulting charge on each sphere? µC (b) How many excess or absent electrons (depending on the sign of your answer to part (a)) correspond to the resulting charge on each sphere? electrons are ---Select--- Additional Materials Readingarrow_forwardIn deep space two spheres each of radius 5.00 m are connected by a 3.00 × 102 m nonconducting cord. If a uniformly distributed charge of 35.0 μC resides on the surface of each sphere, calculate the tension in the cord.arrow_forward
- If two identical conducting spheres are in contact, any excess charge will be evenly distributed between the two. Three identical metal spheres are labeled A, B, and C. Initially, A has 8 nC of charge, B has -4 nC of charge, and C is uncharged. What is the final charge on sphere A if C is touched to B, removed, and then C is touched to A? Note: Your answer is assumed to be reduced to the highest power possible.arrow_forwardFour identical metallic spheres with charges of +9.0 µC, +1.0 µC, −2.6 µC, and −7.6 µC are placed on a piece of paper. The paper is lifted on all corners so that the spheres come into contact with each other simultaneously. The paper is then flattened so that the metallic spheres become separated. (a) What is the resulting charge on each sphere? µC(b) How many excess or absent electrons (depending on the sign of your answer to part (a)) correspond to the resulting charge on each sphere? electrons are absent or in excess?arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 5.40 cm and uniform linear charge density λ = +4.41 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 9.30 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 4.41 pC/m. With V= 0 at infinity, what is V at P? (a) Number i (b) Number i P ‡ ‡ ‡ ‡ + + + +‡‡ ‡ ‡‡ L/2 L/2 Units Units [+ + + ++++G ·L/2 L/2-arrow_forward
- Problem 5: A thin rod of length L = 1.9 m lies along the positive y-axis with one end at the origin. The rod carries a uniformly distributed charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the positive x-axis a distance a = 0.45 m from the origin. Refer to the figure. dy y X a Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of the force on the point charge due to the charge on this thin slice? MultipleChoice : 1) Along the positive x-axis 2) Above the negative x-axis 3) Below the positive x-axis 4) Not enough information to determine 5) There is no force between the point charge and the slice of the rod 6) Above the positive x-axis 7) Below the negative x-axis Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod. SchematicChoice : kQ1Q2ady Q1Q2ady kQ,Q2ady dF dF, = L(a² + y²) dFx 3 3 L(a² + y²)ž L(a² + y²)ž kQ1Q2ydy kQ,Qzydy…arrow_forwardTwo conducting spheres, A and B, have the same radius and sit on insulating stands. When they are touched together, 3.05×1013 electrons flow from sphere A to sphere B. If the total net charge on the spheres is +2.10 μC, what was the initial charge on sphere B?arrow_forwardA conducting sphere of radius r1 = 0.21 m has a total charge of Q = 1.6 μC. A second uncharged conducting sphere of radius r2 = 0.29 m is then connected to the first by a thin conducting wire. The spheres are separated by a very large distance compared to their size. What is the total charge on sphere two, Q2 in coulombs?arrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 9.00 cm and uniform linear charge density λ = +7.57 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 5.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 7.57 pC/m. With V = 0 at infinity, what is V at P? (a) Number i (b) Number i ·+· -L/2 (a) Units Units L/2 +‡ ‡ ‡+3= L/2 .Р (b) L/2arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY