Concept explainers
(a)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(a)
Answer to Problem 22.82QP
The complex ion is octahedral in geometry.
Explanation of Solution
The complex ion
(b)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by transition elements which are d-block elements. A co-ordination compound is known as a complex compound is made of metal atom/ion and ligand(s). Ligands are considered as Lewis bases and the central metal atom is Lewis acid. Ligands donate a pair of electron to metal ion and establishes bonding with metal ion which is known as co-ordinate bond and hence these compounds are named as co-ordination compounds. The ligands represented inside the square brackets.
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(b)
Answer to Problem 22.82QP
The complex will absorb in red region.
Explanation of Solution
The complex ion
(c)
Interpretation:
For the complex
- (a) Geometry of complex ion
- (b) Color absorption in whether red or blue
- (c) Whether high spin or low spin complex
Concept Introduction:
Complex compounds are primarily formed by transition elements which are d-block elements. A co-ordination compound is known as a complex compound is made of metal atom/ion and ligand(s). Ligands are considered as Lewis bases and the central metal atom is Lewis acid. Ligands donate a pair of electron to metal ion and establishes bonding with metal ion which is known as co-ordinate bond and hence these compounds are named as co-ordination compounds. The ligands represented inside the square brackets.
Complex compounds exist in following geometries - tetrahedral, square planar, octahedral etc.
Spectrochemical series refers to the arrangement of ligands with respect to crystal field splitting they cause in the d-orbitals of a metal ion. The ligand that causes larger splitting pattern is referred to as stronger ligand.
The ligands are arranged in increasing order of crystal field splitting they produce.
The ligand that causes larger crystal field splitting is strong ligand and the ligand that causes smaller splitting is termed as weak ligand.
Depending upon magnetic property Complexes are of two types - low spin complex and high spin complex. A complex is said to be low-spin if it doesn't have unpaired electrons whereas in high spin complex there will be presence of unpaired electrons. Stronger ligands pair the electrons and produce diamagnetic, low-spin complexes. Weaker ligands are incapable of pairing the electrons and form paramagnetic, high-spin complexes.
Almost all the Co-ordination compounds are colored compounds. Presence of unpaired electrons in a complex compound makes it colored as the unpaired electrons undergo transition from lower energy level to higher energy level. The color of the complex observed is complementary to the color absorbed in the wavelength region.
(c)
Answer to Problem 22.82QP
The complex is high spin complex.
Explanation of Solution
Referring to spectrochemical series fluoro ligand is a weak ligand. Hence, it forms high spin complex. Therefore
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- using dimensional analysis convert 0.00685 km to micrometersarrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardcalculation based on mole-mole relationshiparrow_forward
- An aquarium measures 175 cm by 225 cm by 151 cm. Calculate the volume of theaquarium in yards3arrow_forwardThe density of sulfuric acid is 0.875 g/cm3. If a procedure needed 4.00 mL of sulfuricacid, how many grams would you measure out?arrow_forwardQuestion Suggest a mechanism for the following reactions. Each will require multiple types of concerted pericyclic reactions (cycloaddition, electrocyclic, and sigmatropic. Classify each reaction type. CN a. NC 180 °Carrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forwardQ2: Ranking Acidity a) Rank the labeled protons in the following molecule in order of increasing pKa. Briefly explain the ranking. Use Table 2.2 as reference. Ha Нь HC H-N Ha OHe b) Atenolol is a drug used to treat high blood pressure. Which of the indicated N-H bonds is more acidic? Explain. (Hint: use resonance structures to help) Name the functional groups on atenolol. H H-N atenolol Ν H-N OH Нarrow_forwardAnswer d, e, and farrow_forward
- If the rotational constant of a molecule is B = 120 cm-1, it can be stated that the transition from 2←1:a) gives rise to a line at 120 cm-1b) is a forbidden transitionc) gives rise to a line at 240 cm-1d) gives rise to a line at 480 cm-1arrow_forwardBriefly indicate the coordination forms of B and Si in borates and silicates, respectively.arrow_forwardCan you please draw out the Lewis structure for these two formulasarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning