![Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781337128391/9781337128391_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Using crystal field theory, the energy level diagram of d-orbitals of the complex ion
Concept Introduction:
There are five d-orbitals in a metal ion. They have similar energy levels that they are degenerated. Under the influence of ligands during complex formation, the degeneracy in d-orbitals is destroyed that they are split into two sets of orbitals - one set having lower energy and the another set is higher in energy. Crystal field splitting refers to the difference in energy levels between these two sets of d-orbitals.
When ligands approach the metal ion the degeneracy in d-orbitals of the metal ion is destroyed and they split into two different energy levels. In case of octahedral complex, the
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 22.58QP
The energy level diagram of d-orbitals of the complex ion
Two unpaired electrons are present in this complex ion.
Explanation of Solution
The electronic configuration of
(b)
Interpretation:
Using crystal field theory, the energy level diagram of d-orbitals of the low-spin complex ion
Concept Introduction:
There are five d-orbitals in a metal ion. They have similar energy levels that they are degenerated. Under the influence of ligands during complex formation, the degeneracy in d-orbitals is destroyed that they are split into two sets of orbitals - one set having lower energy and the another set is higher in energy. Crystal field splitting refers to the difference in energy levels between these two sets of d-orbitals.
When ligands approach the metal ion the degeneracy in d-orbitals of the metal ion is destroyed and they split into two different energy levels. In case of octahedral complex, the
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 22.58QP
The energy level diagram of d-orbitals of the low-spin complex ion
The low-spin complex ion
Explanation of Solution
Atomic number of Osmium is
The electronic configuration of
From the above arrangement we could say there are two unpaired electrons in the complex ion
(c)
Interpretation:
Using crystal field theory, the energy level diagram of d-orbitals of the high-spin complex ion
Concept Introduction:
There are five d-orbitals in a metal ion. They have similar energy levels that they are degenerated. Under the influence of ligands during complex formation, the degeneracy in d-orbitals is destroyed that they are split into two sets of orbitals - one set having lower energy and the another set is higher in energy. Crystal field splitting refers to the difference in energy levels between these two sets of d-orbitals.
When ligands approach the metal ion the degeneracy in d-orbitals of the metal ion is destroyed and they split into two different energy levels. In case of octahedral complex, the
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 22.58QP
The energy level diagram of d-orbitals of the high-spin complex ion
There are five unpaired electrons in the complex ion
Explanation of Solution
Atomic number of Manganese is
The electronic configuration of
From the above arrangement we could say there are five unpaired electrons in the complex ion
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: General Chemistry, Loose-leaf Version, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- Draw and name the R groups of all 20 amino acids.arrow_forward3. Two solutions are prepared using the same solute: Solution A: 0.14 g of the solute dissolves in 15.4 g of t-butanol Solution B: 0.17 g of the solute dissolves in 12.7 g of cyclohexane Which solution has the greatest freezing point change? Show calculations and explain.arrow_forward2. Give the ground state electron configuration (e.g., 02s² σ*2s² П 2p²) for these molecules and deduce its bond order. Ground State Configuration Bond Order H2+ 02- N2arrow_forward
- 1. This experiment is more about understanding the colligative properties of a solution rather than the determination of the molar mass of a solid. a. Define colligative properties. b. Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water? Explain. (i) 0.01 mol of CaCl2 (ii) 0.01 mol of KNO3 (iii) 0.01 mol of CO(NH2)2 (an electrolyte) (an electrolyte) (a nonelectrolyte)arrow_forward5. b. For Trials 2 and 3, the molar mass of the solute was 151 g/mol and 143 g/mol respectively. a. What is the average molar mass of the solute ? b. What are the standard deviation and the relative standard deviation (%RSD) for the molar mass of the solute ?arrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- 2. Explain why ice cubes formed from water of a glacier freeze at a higher temperature than ice cubes formed from water of an under- ground aquifer. Photodynamic/iStockphotoarrow_forwardShow reaction mechanism. don't give Ai generated solutionarrow_forward7. Draw the Lewis structures and molecular orbital diagrams for CO and NO. What are their bond orders? Are the molecular orbital diagrams similar to their Lewis structures? Explain. CO Lewis Structure NO Lewis Structure CO Bond Order NO Bond Order NO Molecular Orbital Diagram CO Molecular Orbital Diagramarrow_forward
- 5. The existence of compounds of the noble gases was once a great surprise and stimulated a great deal of theoretical work. Label the molecular orbital diagram for XeF (include atom chemical symbol, atomic orbitals, and molecular orbitals) and deduce its ground state electron configuration. Is XeF likely to have a shorter bond length than XeF+? Bond Order XeF XeF+arrow_forward6. Draw the molecular orbital diagram shown to determine which of the following is paramagnetic. B22+ B22+, B2, C22, B22 and N22+ Molecular Orbital Diagram B2 C22- B22- N22+ Which molecule is paramagnetic?arrow_forward3. Put the following species in order of increasing bond length by using molecular orbital diagrams and calculating their bond orders: F2, F2, F2+ Molecular Orbital Diagram F2 F2 F2+ Bond Order Shortest bond: Longest bondarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)