The device shown in Figure CQ22.7, called a thermoelectric converter, uses a series of semiconductor cells to transform internal energy to electric potential energy, which we will study in Chapter 25. In the photograph on the left, both legs of the device are at the same temperature and no electric potential energy is produced. When one leg is at a higher temperature than the other as shown in the photograph on the right, however, electric potential energy is produced as the device extracts energy from the hot reservoir and drives a small electric motor. (a) Why is the difference in temperature necessary to produce electric potential energy in this demonstration? (b) In what sense does this intriguing experiment demonstrate the second law of thermodynamics ?
The device shown in Figure CQ22.7, called a thermoelectric converter, uses a series of semiconductor cells to transform internal energy to electric potential energy, which we will study in Chapter 25. In the photograph on the left, both legs of the device are at the same temperature and no electric potential energy is produced. When one leg is at a higher temperature than the other as shown in the photograph on the right, however, electric potential energy is produced as the device extracts energy from the hot reservoir and drives a small electric motor. (a) Why is the difference in temperature necessary to produce electric potential energy in this demonstration? (b) In what sense does this intriguing experiment demonstrate the second law of thermodynamics ?
Solution Summary: The author explains the second law of thermodynamics, which states that heat flows from high temperature to law temperature, and the direction of the potential difference changes with the change in energy flow.
The device shown in Figure CQ22.7, called a thermoelectric converter, uses a series of semiconductor cells to transform internal energy to electric potential energy, which we will study in Chapter 25. In the photograph on the left, both legs of the device are at the same temperature and no electric potential energy is produced. When one leg is at a higher temperature than the other as shown in the photograph on the right, however, electric potential energy is produced as the device extracts energy from the hot reservoir and drives a small electric motor. (a) Why is the difference in temperature necessary to produce electric potential energy in this demonstration? (b) In what sense does this intriguing experiment demonstrate the second law of thermodynamics?
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.