Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 22, Problem 22.71AP
A power plant, having a Carnot efficiency, produces 1.00 GW of electrical power from turbines that take in steam at 500 K and reject water at 300 K into a flowing river. The water downstream is 6.00 K warmer due to the output of the power plant. Determine the flow rate of the river.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A steam turbine receives a steam flow rate of 2kg/s and the power output is..
700 kW. The heat loss from the casing is negligible. B. when the velocity at the
entrance is 60 m/s, the velocity at exit is 360 m/s, and the inlet pipe is 3 m above
* ?the exhaust pipe, the change of specific enthalpy across the turbine is
700
600
400
NON OF THE ABOVE
A detailed answer will be great
Refrigerant 134a enters a compressor with a mass flow rate of 5 kg/s and a negligible velocity. The refrigerant enters the compressor as a saturated vapor at 10°C and leaves the compressor at 1400 kPa with an enthalpy of 281.39 kJ/kg and a velocity of 50 m/s. The rate of work done on the refrigerant is measured to be 132.4 kW. If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated with this process, in kW.
Chapter 22 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 22 - The energy input to an engine is 4.00 times...Ch. 22 - The energy entering an electric heater by...Ch. 22 - Three engines operate between reservoirs separated...Ch. 22 - (a) Suppose you select four cards at random from a...Ch. 22 - An ideal gas is taken from an initial temperature...Ch. 22 - True or False: The entropy change in an adiabatic...Ch. 22 - The second law of thermodynamics implies that the...Ch. 22 - Assume a sample of an ideal gas is at room...Ch. 22 - A refrigerator has 18.0 kJ of work clone on it...Ch. 22 - Of the following, which is not a statement of the...
Ch. 22 - Consider cyclic processes completely characterized...Ch. 22 - Prob. 22.6OQCh. 22 - A steam turbine operates at a boiler temperature...Ch. 22 - A thermodynamic process occurs in which the...Ch. 22 - A sample of a monatomic ideal gas is contained in...Ch. 22 - An engine does 15.0 kJ of work while exhausting...Ch. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 22.3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - Prob. 22.6CQCh. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 22.10CQCh. 22 - Prob. 22.11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - Prob. 22.13CQCh. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - An engine absorbs 1.70 kJ from a hot reservoir at...Ch. 22 - A multicylinder gasoline engine in an airplane,...Ch. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - A refrigerator has a coefficient of performance...Ch. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - A heat pump has a coefficient of performance of...Ch. 22 - A refrigerator has a coefficient of performance of...Ch. 22 - A heat pump has a coefficient of performance equal...Ch. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 22.14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Why is the following situation impossible? An...Ch. 22 - A Carnot engine has a power output of 150 kW. The...Ch. 22 - A Carnot engine has a power output P. The engine...Ch. 22 - What is the coefficient of performance of a...Ch. 22 - An ideal refrigerator or ideal heat pump is...Ch. 22 - Prob. 22.21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - If a 35.0% -efficient Carnot heat engine (Fig....Ch. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - A heat engine is being designed to have a Carnot...Ch. 22 - A Carnot heat engine operates between temperatures...Ch. 22 - An ideal gas is taken through a Carnot cycle. The...Ch. 22 - Prob. 22.28PCh. 22 - Prob. 22.29PCh. 22 - Suppose you build a two-engine device with the...Ch. 22 - Argon enters a turbine at a rate of 80.0 kg/min, a...Ch. 22 - At point A in a Carnot cycle, 2.34 mol of a...Ch. 22 - An electric generating station is designed to have...Ch. 22 - An ideal (Carnot) freezer in a kitchen has a...Ch. 22 - A heat pump used for heating shown in Figure...Ch. 22 - A gasoline engine has a compression ratio of 6.00....Ch. 22 - In a cylinder of an automobile engine, immediately...Ch. 22 - An idealized diesel engine operates in a cycle...Ch. 22 - Prob. 22.39PCh. 22 - (a) Prepare a table like Table 21.1 for the...Ch. 22 - Prob. 22.41PCh. 22 - An ice tray contains 500 g of liquid water at 0C....Ch. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - A 1.00-kg iron horseshoe is taken from a forge at...Ch. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 22.46PCh. 22 - Prob. 22.47PCh. 22 - 1.00-mol sample of H2 gas is contained in the left...Ch. 22 - A 2.00-L container has a center partition that...Ch. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - How fast are you personally making the entropy of...Ch. 22 - When an aluminum bar is connected between a hot...Ch. 22 - When a metal bar is connected between a hot...Ch. 22 - Prob. 22.55PCh. 22 - Calculate the increase in entropy of the Universe...Ch. 22 - How much work is required, using an ideal Carnot...Ch. 22 - Prob. 22.58APCh. 22 - The energy absorbed by an engine is three times...Ch. 22 - Prob. 22.60APCh. 22 - Prob. 22.61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 22.63APCh. 22 - One mole of neon gas is heated from 300 K to 420 K...Ch. 22 - Au airtight freezer holds n moles of air at 25.0C...Ch. 22 - Suppose an ideal (Carnot) heat pump could be...Ch. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - A firebox is at 750 K, and the ambient temperature...Ch. 22 - Review. This problem complements Problem 44 in...Ch. 22 - A biology laboratory is maintained at a constant...Ch. 22 - A power plant, having a Carnot efficiency,...Ch. 22 - A power plant, having a Carnot efficiency,...Ch. 22 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - A 1.00-mol sample of a monatomic ideal gas is...Ch. 22 - A sample consisting of n moles of an ideal gas...Ch. 22 - An athlete whose mass is 70.0 kg drinks 16.0...Ch. 22 - Prob. 22.79APCh. 22 - Prob. 22.80APCh. 22 - A 1.00-mol sample of an ideal gas ( = 1.40) is...Ch. 22 - The compression ratio of an Otto cycle as shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardArgon enters a turbine at a rate of 80.0 kg/min, a temperature of 800C, and a pressure of 1.50 MPa. It expands adiabatically as it pushes on the turbine blades and exits at pressure 300 kPa. (a) Calculate its temperature at exit. (b) Calculate the (maximum) power output of the turning turbine. (c) The turbine is one component of a model closed-cycle gas turbine engine. Calculate the maximum efficiency of the engine.arrow_forwardYou are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0C (surface-water temperature) and 5.00C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy absorbed from sunlight on the surface. If the average intensity absorbed from sunlight is 650 W/m2 for 12 daylight hours on a clear day, you need to find the area of the ocean surface that is necessary for sunlight to replace the energy absorbed into the engine. (e) From this information, you need to determine if there is enough ocean surface on the Earth to use such engines to supply the electrical needs for all the homes associated with the Earths population. Assume the energy use for a home in part (c) is an average over the entire planet. (f) In view of your results in this problem, your supervisor has asked for your conclusion as to whether such a system is worthwhile to pursue. Note that the fuel (sunlight) is free.arrow_forward
- Are the entropy changes of the system in the following processes positive or negative? (a) water vapor that condenses on a cold surface; (b) gas in a that leaks into the surrounding atmosphere; (c) an ice cube that melts in a glass of lukewarm water; (d)the lukewarm water of part (c); a real heat engine performing a cycle; (f) food cooled in a refrigerator.arrow_forwardThe compression ratio of an Otto cycle as shown in Figure 21.12 is VA/VB = 8.00. At the beginning A of the compression process, 500 cm3 of gas is at 100 kPa and 20.0C. At the beginning of the adiabatic expansion, the temperature is TC = 750C. Model the working fluid as an ideal gas with = 1.40. (a) Fill in this table to follow the states of the gas: (b) Fill in this table to follow the processes: (c) Identify the energy input |Qh|, (d) the energy exhaust |Qc|, and (e) the net output work Weng. (f) Calculate the efficiency. (g) Find the number of crankshaft revolutions per minute required for a one-cylinder engine to have an output power of 1.00 kW = 1.34 hp. Note: The thermodynamic cycle involves four piston strokes.arrow_forwardIf a gas is compressed isothermally, which of the following statements is true? (a) Energy is transferred into the gas by heat. (b) No work is done on the gas. (c) The temperature of the gas increases, (d) The internal energy of the gas remains constant, (e) None of those statements is true.arrow_forward
- One mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardWarm winds called Chinooks sweep across the plains ju Mountains. These winds carry air from high in the mountain rapidly enough that the air has no time to exchange heat with a particular Chinook day, temperature and pressure high in the 60 kPa and 265 K, respectively; the plain below is 90 kPa. (a) the plain, does its volume increase or decrease? (b) How about And its internal energy? Please give explanations for all your answersarrow_forwardAn ideal gas expands at a constant pressure of 6.00 105 Pa from a volume of 1.00 m3 to a volume of 4.00 m3 and then is compressed to one-third that pressure and a volume of 2.50 m3 as shown in the figure below before returning to its initial state. How much work is done in taking a gas through one cycle of the process shown in the figure?arrow_forward
- Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 3.5 kg/s and leaves at 10 kPa. If the power output of the turbine is 2.5 MW, determine the temperature of the steam at the turbine exit. Neglect kinetic energy changes. Use data from the steam tables. The temperature of the steam at the turbine exit is | °C.arrow_forwardPlease Asaparrow_forward6.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY