Concept explainers
(a)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.
Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
Figure 1
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Lithium enolate of acetone attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of acetone followed by
(b)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with the lithium enolate of ethyl
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.
Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
Figure 2
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Lithium enolate of
The principal organic product obtained when isobutyraldehyde reacts with the lithium enolate of ethyl
(c)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with ethyl
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.
Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with ethyl
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with ethyl
Figure 3
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
The zinc metal converts the ethyl
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Reformatsky reaction.
The principal organic product obtained when isobutyraldehyde reacts with ethyl
(d)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with diethyl malonate and a secondary
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.
Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
Figure 4
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Malonic ester is converted into the enolate ion by the secondary amine taken as the catalyst. The secondary amine pyridine taken here is basic in nature and takes up the acidic proton of the malonic ester.
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Knoevenagal reaction.
The principal organic product obtained when isobutyraldehyde reacts with diethyl malonate and a secondary amine
(e)
Interpretation:
The principal organic product expected when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Concept introduction:
The nucleophilic addition reactions of carbonyl compounds are well known due to the polarity of the carbonyl group. The nucleophile attacks on the carbonyl and adds to the carbonyl carbon. The addition of enolate ion on the carbonyl compounds is known as aldol reaction.
Answer to Problem 22.57AP
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Explanation of Solution
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Figure 5
The enolate ions attack rapidly on the carbonyl group. The enolate ion attacks the carbonyl carbon from the carbon-side and undergoes addition on the carbonyl compound.
Ethyl acetoacetate is converted into the enolate ion by the secondary amine taken as the catalyst. The secondary amine pyridine taken here is basic in nature and takes up the acidic proton of the malonic ester.
The enolate ion generated attacks on the isobutyraldehyde from the carbon side and adds on the molecule. The acidic workup converts the oxide ion generated into alcohol group.
This reaction is a name reaction known as Knoevenagal reaction.
The principal organic product obtained when isobutyraldehyde reacts with ethyl acetoacetate and a secondary amine
Want to see more full solutions like this?
Chapter 22 Solutions
ORGANIC CHEM +SG +SAPLING >IP<
- Give the name of this compound, including stereochemistry if relevant: CICH2 CH3 Br CH₂CH=CH2 Write in the product, including stereochemistry where relevant, for these reactions. See end of ch. 8, p. 301-303. 1. 03 a) 2-methyl-2-pentene -> 2. Zn, H* Br2 b) 1-ethylcyclopentene -->arrow_forwardNonearrow_forward3. You may want to read paragraph 1.5 in your textbook before answering this question. Give electron configuration (short-hand notation is fine) for: (5 points) 3+ a) Manganese atom and Mn³+ b) Se atom c) Cu atom and Cu+arrow_forward
- However, why are intermolecular forces in metallic and ionic compounds not discussed as extensively? Additionally, what specific types of intermolecular attractions exist in metals and ionic compoundsarrow_forwardWhat is the preparation of 1 Liter of 0.1M NH4Cl buffer at pH 9.0 with solid NH4Cl and 0.1M NaOH. How would I calculate the math to describe this preparation? How would I use Henderson-Hasselbach equation?arrow_forwardC Predict the major products of this organic reaction. Be sure you use wedge and dash bonds when necessary, for example to distinguish between major products with different stereochemistry. : ☐ + x G C RCO₂H Click and drag to start drawing a structure.arrow_forward
- Fill in the blanks by selecting the appropriate term from below: For a process that is non-spontaneous and that favors products at equilibrium, we know that a) ΔrG∘ΔrG∘ _________, b) ΔunivSΔunivS _________, c) ΔsysSΔsysS _________, and d) ΔrH∘ΔrH∘ _________.arrow_forwardHighest occupied molecular orbital Lowest unoccupied molecular orbital Label all nodes and regions of highest and lowest electron density for both orbitals.arrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 20 NaоH 0103 Br (B) H2504 → (c) (A) 100- MS-NU-0547 80 40 20 31 10 20 100- MS2016-05353CM 80 60 100 MS-NJ-09-3 80 60 40 20 45 J.L 80 S1 84 M+ absent राग 135 137 S2 62 164 166 11 S3 25 50 75 100 125 150 175 m/zarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningEBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENT