The Coaxial Cable. A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b and outer radius c . The outer cylinder is mounted on insulating supports and has no net charge. The inner cylinder has a uniform positive charge per unit length λ . Calculate the electric field (a) at any point between the cylinders a distance r from the axis and (b) at any point outside the outer cylinder, (c) Graph the magnitude of the electric field as a function of the distance r from the axis of the cable, from r = 0 to r = 2 c . (d) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.
The Coaxial Cable. A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b and outer radius c . The outer cylinder is mounted on insulating supports and has no net charge. The inner cylinder has a uniform positive charge per unit length λ . Calculate the electric field (a) at any point between the cylinders a distance r from the axis and (b) at any point outside the outer cylinder, (c) Graph the magnitude of the electric field as a function of the distance r from the axis of the cable, from r = 0 to r = 2 c . (d) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.
The Coaxial Cable. A long coaxial cable consists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b and outer radius c. The outer cylinder is mounted on insulating supports and has no net charge. The inner cylinder has a uniform positive charge per unit length λ. Calculate the electric field (a) at any point between the cylinders a distance r from the axis and (b) at any point outside the outer cylinder, (c) Graph the magnitude of the electric field as a function of the distance r from the axis of the cable, from r = 0 to r = 2c. (d) Find the charge per unit length on the inner surface and on the outer surface of the outer cylinder.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.