(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
(a) At a distance of 0.200 cm from the center or a charged conducting sphere with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the center of the sphere? (b) At a distance of 0.200 cm from the axis of a very long charged conducting cylinder with radius 0.100 cm, the electric field is 480 N/C. What is the electric field 0.600 cm from the axis of the cylinder? (c) At a distance of 0.200 cm from a large uniform sheet of charge, the electric field is 480 N/C. What is the electric field 1.20 cm from the sheet?
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.
In the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)
Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.
Chapter 22 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.