College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 19PE
(a) At what speed will a proton move in a circular path of the same radius as the electron in Exercise 22.12? (b) What would the radius of the path be it the proton had the same speed as the electron? (c) What would the radius be if the proton had the same kinetic energy as the electron? (d) The same momentum?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
Chapter 22 Solutions
College Physics
Ch. 22 - Volcanic and other such activity at the...Ch. 22 - Explain why the magnetic field would not be unique...Ch. 22 - List the ways in which magnetic field lines and...Ch. 22 - Noting that the magnetic field lines of a bar...Ch. 22 - Is the Earth's magnetic field parallel to the...Ch. 22 - If a charged particle moves in a straight line...Ch. 22 - How can the motion of a charged particle be used...Ch. 22 - High-velocity charged particles can damage...Ch. 22 - If a cosmic ray proton approaches the Earth from...Ch. 22 - Prob. 10CQ
Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - While operating, a high-precision TV monitor is...Ch. 22 - Discuss how the Hall effect could be used to...Ch. 22 - Prob. 15CQCh. 22 - Prob. 16CQCh. 22 - Why would a magnetohydrodynamic drive work better...Ch. 22 - Which is more likely to interfere with compass...Ch. 22 - Prob. 19CQCh. 22 - Prob. 20CQCh. 22 - Is the force attractive or repulsive between the...Ch. 22 - Prob. 22CQCh. 22 - Suppose two long straight wires run perpendicular...Ch. 22 - Prob. 24CQCh. 22 - Prob. 25CQCh. 22 - Electric field lines can be shielded by me Faraday...Ch. 22 - Measurements at the weak and ?uctuating magnetic...Ch. 22 - Discuss the possibility that a Hall voltage would...Ch. 22 - A patient in an MRI unit turns his head quickly to...Ch. 22 - You are told that in a certain region there is...Ch. 22 - An example of magnetohydrodynamics (MHD) comes...Ch. 22 - Draw gravitational field lines between 2 masses,...Ch. 22 - Prob. 1PECh. 22 - Repeal Exercise 22.1 for a negative charge.Ch. 22 - Prob. 3PECh. 22 - Repeal Exercise 22.3 for a positive charge.Ch. 22 - Prob. 5PECh. 22 - Repeal Exercise 22.5 for a negative charge.Ch. 22 - What is the maximum force on an aluminum rod with...Ch. 22 - (a) Aircraft sometimes acquire small static...Ch. 22 - (a) A cosmic ray proton moving toward the Earth at...Ch. 22 - An electron moving at 4.00103m/s in a 1.25T...Ch. 22 - (a) A physicist performing a sensitive measurement...Ch. 22 - A cosmic ray electron moves at 7.50106m/s...Ch. 22 - A proton moves at 7.50107m/s perpendicular to a...Ch. 22 - (a) Viewers of Star Trek hear of an antimatter...Ch. 22 - (a) An oxygen16 ion with a mass at 2.661026kg...Ch. 22 - What radius circular path does an electron travel...Ch. 22 - A velocity selector in a mass spectrometer uses a...Ch. 22 - An electron in a TV CRT moves with a speed at...Ch. 22 - (a) At what speed will a proton move in a circular...Ch. 22 - A mass spectrometer is being used to separate...Ch. 22 - (a) Triply charged uranium-235 and uranium-238...Ch. 22 - A large water main is 2.50 m in diameter and the...Ch. 22 - What Hall voltage is produced by a 0.200T field...Ch. 22 - (a) What is the speed of a supersonic aircraft...Ch. 22 - A nonmechanical water meter could utilize the Hall...Ch. 22 - Calculate the Hall voltage induced on a patient’s...Ch. 22 - A Hall probe calibrated to read 1.00V when placed...Ch. 22 - Using information in Example 20.6, what would the...Ch. 22 - Show that the Hall voltage across wires made of...Ch. 22 - A patient with a pacemaker is mistakenly being...Ch. 22 - Prob. 31PECh. 22 - Prob. 32PECh. 22 - Prob. 33PECh. 22 - (a) What is the force per meter on a lightning...Ch. 22 - (a) A DC power line for a light-rail system...Ch. 22 - What force is exerted on the water in an MHD drive...Ch. 22 - A wire carrying a 30.0-A current passes between...Ch. 22 - (a) A 0.750-m-long section of cable carrying...Ch. 22 - (a) What is the angle between a wire carrying an...Ch. 22 - Prob. 40PECh. 22 - (a) By how many percent is the torque of a motor...Ch. 22 - (a) What is me maximum torque on a 150Turn square...Ch. 22 - Find the current through a loop needed to create a...Ch. 22 - Calculate the magnetic field strength needed on a...Ch. 22 - Since the equation for torque on a...Ch. 22 - (a) At what angle (is the torque on a current loop...Ch. 22 - A proton has a magnetic field due to its spin on...Ch. 22 - (a) A 200Turn circular loop of radius 50.0 cm is...Ch. 22 - Repeat Exercise 22.41, but with the loop lying...Ch. 22 - (a) The hot and neutral wires supplying DC power...Ch. 22 - The force per meter between the two wires of a...Ch. 22 - A 2.50m segment of wire supplying current to the...Ch. 22 - The wire carrying 400 A to The motor of a commuter...Ch. 22 - An AC appliance cord has its hot and neutral wires...Ch. 22 - Prob. 55PECh. 22 - Prob. 56PECh. 22 - Prob. 57PECh. 22 - Prob. 58PECh. 22 - Prob. 59PECh. 22 - Prob. 60PECh. 22 - To see why an MRI utilizes iron to increase the...Ch. 22 - Inside a motor, 30.0 A passes through a 250-turn...Ch. 22 - Nonnuclear submarines use batteries for power when...Ch. 22 - How strong is the magnetic field inside a solenoid...Ch. 22 - What current is needed in the solenoid described...Ch. 22 - How far from the starter cable of a car, carrying...Ch. 22 - Prob. 67PECh. 22 - Prob. 68PECh. 22 - Prob. 69PECh. 22 - Prob. 70PECh. 22 - Prob. 71PECh. 22 - Calculate the size of the magnetic field 20 m...Ch. 22 - Prob. 73PECh. 22 - Integrated Concepts (a) What voltage will...Ch. 22 - Integrated Concepts Find the radius of curvature...Ch. 22 - Integrated Concepts To construct a nonmechanical...Ch. 22 - Integrated Concepts (a) Using the values given for...Ch. 22 - Integrated Concepts (a) Calculate the maximum...Ch. 22 - Integrated Concepts A current balance used to...Ch. 22 - Prob. 80PECh. 22 - Prob. 81PECh. 22 - Integrated Concepts (a) A 0.140-kg baseball,...Ch. 22 - Integrated Concepts (a) What is the direction of...Ch. 22 - Integrated Concepts One long straight wire is to...Ch. 22 - Unreasonable Results (a) Find the charge on a...Ch. 22 - Unreasonable Results A charged particle having...Ch. 22 - Unreasonable Results An inventor wants to generate...Ch. 22 - Unreasonable Results Frustrated by the small Hall...Ch. 22 - Unreasonable Results A surveyor 100 m from a long...Ch. 22 - Construct Your Own Problem Consider a mass...Ch. 22 - Construct Your Own Problem Consider using the...Ch. 22 - Prob. 1TPCh. 22 - Prob. 2TPCh. 22 - Prob. 3TPCh. 22 - Prob. 4TPCh. 22 - Prob. 5TPCh. 22 - Prob. 6TPCh. 22 - Prob. 7TPCh. 22 - Prob. 8TPCh. 22 - Prob. 9TPCh. 22 - Prob. 10TPCh. 22 - Prob. 11TPCh. 22 - Prob. 12TPCh. 22 - Prob. 13TPCh. 22 - Prob. 14TPCh. 22 - Prob. 15TPCh. 22 - Prob. 16TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
1. A person gets in an elevator on the ground floor and rides it to the top floor of a building. Sketch a veloc...
College Physics: A Strategic Approach (3rd Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
The enzyme that catalyzes the C C bond cleavage reaction that converts serine to glycine removes the substitue...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY