GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron e c at the disk center and electrons e s at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field E c → due to electron e c and (b) the net electric field E → s , net due to electrons e s ? The proton is then moved to z = R /10.0. What then are the magnitudes of (с) E c → and (d) E → s , net at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of E c → increases, as expected. Why does the magnitude of E → s , net from the two side electrons decrease, as we see from (b) and (d)? Figure 22-40 Problem 13.
GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron e c at the disk center and electrons e s at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field E c → due to electron e c and (b) the net electric field E → s , net due to electrons e s ? The proton is then moved to z = R /10.0. What then are the magnitudes of (с) E c → and (d) E → s , net at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of E c → increases, as expected. Why does the magnitude of E → s , net from the two side electrons decrease, as we see from (b) and (d)? Figure 22-40 Problem 13.
GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron ec at the disk center and electrons es at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field
E
c
→
due to electron ec and (b) the net electric field
E
→
s
,
net
due to electrons es? The proton is then moved to z = R/10.0. What then are the magnitudes of (с)
E
c
→
and (d)
E
→
s
,
net
at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of
E
c
→
increases, as expected. Why does the magnitude of
E
→
s
,
net
from the two side electrons decrease, as we see from (b) and (d)?
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.