GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron e c at the disk center and electrons e s at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field E c → due to electron e c and (b) the net electric field E → s , net due to electrons e s ? The proton is then moved to z = R /10.0. What then are the magnitudes of (с) E c → and (d) E → s , net at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of E c → increases, as expected. Why does the magnitude of E → s , net from the two side electrons decrease, as we see from (b) and (d)? Figure 22-40 Problem 13.
GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron e c at the disk center and electrons e s at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field E c → due to electron e c and (b) the net electric field E → s , net due to electrons e s ? The proton is then moved to z = R /10.0. What then are the magnitudes of (с) E c → and (d) E → s , net at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of E c → increases, as expected. Why does the magnitude of E → s , net from the two side electrons decrease, as we see from (b) and (d)? Figure 22-40 Problem 13.
GO Figure 22-40 shows a proton (р) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron ec at the disk center and electrons es at opposite sides of the disk, at radius R from the center. The proton is initially at distance z = R = 2.00 cm from the disk. At that location, what are the magnitudes of (a) the electric field
E
c
→
due to electron ec and (b) the net electric field
E
→
s
,
net
due to electrons es? The proton is then moved to z = R/10.0. What then are the magnitudes of (с)
E
c
→
and (d)
E
→
s
,
net
at the proton's location? (e) From (a) and (c) we see that as the proton gets nearer to the disk, the magnitude of
E
c
→
increases, as expected. Why does the magnitude of
E
→
s
,
net
from the two side electrons decrease, as we see from (b) and (d)?
What is the critical angle fir the light travelling from the crown glass(n=1.52) into the air(n=1.00)?
No chatgpt pls will upvote
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
Write AK + AU + AE int
= W+Q + TMW
+
TMT + TET + TER for the car-track-Earth system and solve for…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.