Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 82PCE
Predict/Calculate Consider the RC circuit shown in Figure 21-55. Find (a) the time constant and (b) the initial current for this circuit. (c) It is desired to increase the time constant of this circuit by adjusting the value of the 6.5-Ω resistor. Should the resistance of this resistor be increased or decreased to have the desired effect? Explain.
Figure 21-55
Problem 82
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Do it correctly!
In RC Circuit, the voltage across the resistor decreases as the capacitor charges. Explain the reason for this behavior.
9/ The RC Circuit in the followthg Figure has
R=3 KSL and C=5MF. The Capacitor has Valdage 6 at t:o
when the switch is clased. How long dbes it fake the Capacitor
to discharge
Find the time Cans tant of the Circuit?
to 25% of its Inihial Veltage ?
Chapter 21 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 21.1 - Enhance Your Understanding 1. The following...Ch. 21.2 - Enhance Your Understanding 2. If the voltage and...Ch. 21.3 - Enhance Your Understanding 3. In the following...Ch. 21.4 - The two circuits shown in Figure 21-17 have...Ch. 21.5 - Prob. 5EYUCh. 21.6 - Do two capacitors give a larger equivalent...Ch. 21.7 - Give a symbolic expression for the current that...Ch. 21 - Your body is composed of electric charges. Does it...Ch. 21 - Suppose you charge a comb by rubbing it through...Ch. 21 - An electron moving through a wire has an average...
Ch. 21 - Are car headlights connected in series or...Ch. 21 - Is it possible to connect a group of resistors of...Ch. 21 - What physical quantity do resistors connected in...Ch. 21 - What physical quantity do resistors connected in...Ch. 21 - Explain how electrical devices can begin operating...Ch. 21 - Explain the difference between resistivity and...Ch. 21 - Explain why birds can roost on high-voltage wires...Ch. 21 - Consider the circuit shown in Figure 21-36, in...Ch. 21 - A flashlight bulb carries a current of 0.38 A for...Ch. 21 - Predict/Calculate A car battery does 360 J of work...Ch. 21 - Highly sensitive ammeters can measure currents as...Ch. 21 - A television set connected to a 120-V outlet...Ch. 21 - BIO Pacemaker Batteries Pacemakers designed for...Ch. 21 - A conducting wire is quadrupled in length and...Ch. 21 - Figure 21-37 shows a plot of current versus...Ch. 21 - Predict/Explain Current-versus-voltage plots for...Ch. 21 - Prob. 9PCECh. 21 - When a potential difference of 12 V is applied to...Ch. 21 - Prob. 11PCECh. 21 - Prob. 12PCECh. 21 - Transcranial Direct-Current Stimulation In a tDCS...Ch. 21 - The four conducting cylinders shown in Figure...Ch. 21 - Predict/Calculate A bird lands on a bare copper...Ch. 21 - Prob. 16PCECh. 21 - Predict/Calculate BIO Current Through a Cell...Ch. 21 - Prob. 18PCECh. 21 - Prob. 19PCECh. 21 - BIO Resistance and Current in the Human Finger The...Ch. 21 - If a potential difference V is maintained between...Ch. 21 - Light A has four times the power rating of light B...Ch. 21 - Two lightbulbs operate on the same potential...Ch. 21 - Problems and Conceptual Exercises Section 21-3...Ch. 21 - A 65-V generator supplies 4.8 kW of power. How...Ch. 21 - A portable CD player operates with a current of 18...Ch. 21 - Find the power dissipated in a 22- electric heater...Ch. 21 - The current in a 120-V reading lamp is 2.6 A. If...Ch. 21 - Circuit A in a house has a voltage of 208 V and is...Ch. 21 - Predict/Calculate A 65-W lightbulb operates on a...Ch. 21 - Rating Car Batteries Car batteries are rated by...Ch. 21 - Predict/Explain A dozen identical lightbulbs are...Ch. 21 - A circuit consists of three resistors, R1 R2 R3,...Ch. 21 - Predict/Explain Two resistors are connected in...Ch. 21 - What is the minimum number of 88- resistors that...Ch. 21 - Find the equivalent resistance between points A...Ch. 21 - A 9.00-V battery is connected across the terminals...Ch. 21 - Holiday Lights In a string of holiday lights, 50...Ch. 21 - Your toaster has a power cord with a resistance of...Ch. 21 - Prob. 40PCECh. 21 - Predict/Calculate Three resistors, 11, 53 , and R,...Ch. 21 - A circuit consists of a battery connected to three...Ch. 21 - Predict/Calculate Three resistors, 22 , 67 , and...Ch. 21 - Prob. 44PCECh. 21 - The equivalent resistance between points A and B...Ch. 21 - Find the equivalent resistance between points A...Ch. 21 - How many 23-W lightbulbs can be connected in...Ch. 21 - The circuit in Figure 21-43 includes a battery...Ch. 21 - Predict/Calculate A 12-V battery is connected to...Ch. 21 - Predict/Calculate The terminals A and B in Figure...Ch. 21 - Predict/Calculate Suppose the battery in Figure...Ch. 21 - Predict/Calculate The current flowing through the...Ch. 21 - Predict/Calculate Four identical resistors are...Ch. 21 - Find the magnitude and direction (clockwise or...Ch. 21 - Predict/Calculate Suppose the polarity of the...Ch. 21 - Predict/Calculate It is given that point A in...Ch. 21 - Consider the circuit shown in Figure 21-47. Find...Ch. 21 - Suppose point A is grounded (V = 0) in Figure...Ch. 21 - Predict/Calculate (a) Find the current in each...Ch. 21 - Two batteries and three resistors are connected as...Ch. 21 - Two capacitors, C1 = C and C2 = 2C, are connected...Ch. 21 - Predict/Explain Two capacitors are connected in...Ch. 21 - Predict/Explain Two capacitors are connected in...Ch. 21 - A 252-F capacitor is connected in series with a...Ch. 21 - A 36-F capacitor is connected in parallel with an...Ch. 21 - Find the equivalent capacitance between points A...Ch. 21 - A 15-V battery is connected to three capacitors in...Ch. 21 - Three different circuits, each containing a switch...Ch. 21 - Terminals A and B in Figure 21-50 are connected to...Ch. 21 - Predict/Calculate You would like to add a second...Ch. 21 - Two capacitors, one 7.5 F and the other 15 F, are...Ch. 21 - The equivalent capacitance of the capacitors shown...Ch. 21 - With the switch in position A, the 11.2-F...Ch. 21 - The switch on an RC circuit is closed at t = 0....Ch. 21 - The capacitor in an RC circuit (R = 120 , C = 45...Ch. 21 - Three RC circuits have the emf, resistance, and...Ch. 21 - Consider an RC circuit with = 12.0 V, R = 195 ,...Ch. 21 - The resistor in an RC circuit has a resistance of...Ch. 21 - A flash unit for a camera has a capacitance of...Ch. 21 - Figure 21-54 shows a simplified circuit for a...Ch. 21 - Nerve Impulse Propagation The speed with which...Ch. 21 - Predict/Calculate Consider the RC circuit shown in...Ch. 21 - CE Consider the circuit shown in Figure 21-56, in...Ch. 21 - CE Predict/Explain (a) Referring to Problem 83 and...Ch. 21 - CE Consider the circuit shown in Figure 21-57, in...Ch. 21 - CE Predict/Explain (a) When the switch is closed...Ch. 21 - Suppose that points A and B in Figure 21-41 are...Ch. 21 - CE The circuit shown in Figure 21-58 shows a...Ch. 21 - CE The three circuits shown in Figure 21-59 have...Ch. 21 - Electrical Safety Codes For safety reasons,...Ch. 21 - A portable CD player uses a current of 7.5 mA at a...Ch. 21 - An electrical heating coil is immersed in 6.6 kg...Ch. 21 - Predict/Calculate Consider the circuit shown in...Ch. 21 - Prob. 94GPCh. 21 - BIO Pacemaker Pulses A pacemaker sends a pulse to...Ch. 21 - Three resistors (R,12R,2R) are connected to a...Ch. 21 - Predict/Calculate Suppose we connect a 12.0-V...Ch. 21 - National Electric Code In the United States, the...Ch. 21 - Solar Panel Power The current-versus-voltage plot...Ch. 21 - Predict/Calculate A 15.0-V battery is connected to...Ch. 21 - When two resistors, R1 and R2, are connected in...Ch. 21 - The circuit shown in Figure 21-62 is known as a...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - The standard specifies that footwear should be...Ch. 21 - Referring to Example 21-13 Suppose the three...Ch. 21 - Referring to Example 21-13 Suppose R1 = R2 = 225 ...Ch. 21 - Predict/Calculate Referring to Example 21-18...Ch. 21 - Predict/Calculate Referring to Example 21-18...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
15.1 What purpose do the bla and lacZ genes serve in the plasmid vector ?
Genetic Analysis: An Integrated Approach (3rd Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
49. Write full electron configuration for each element.
a. Sr
b. Ge
c. Li
d. Kr
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The timing device in an automobile’s intermittent wiper system is based on an RC time constant and utilizes 0.5.00F capacitor and available resistor. Over what range must R be made to vary to achieve time constants from 2.00 to 15.0 s?arrow_forwardRegarding the units involved in the relationship t = RC, verify that the units of resistance times capacitance are time, that is, . F = S.arrow_forwardFigure 21.55 shows how a bleeder resistor is used to discharge a capacitor after an electronic device is shut off allowing a person to work on the electronics with less risk of shock, (a) What is the time constant? (b) How long will it take to reduce the voltage on the capacitor to 0.250% (5% of 5%) of its full value once discharge begins? (c) If the capacitor is charged to a voltage V0through a 100-O resistance, calculate the time it takes to rise to 0.865V0(This is about two time constants.)arrow_forward
- When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is limited by the RC constant of the circuit-it is not possible to measure time variations shorter than RC. How would you manipulate R and C in the circuit to allow the necessary measurements?arrow_forwardA 2.00- and a 7.50-F capacitor can be connected in series or parallel, as can a 25.0- and a 100k resistor. Calculate the four RC time constants possible from connecting the resulting capacitance and resistance in series.arrow_forwardDraw two graphs of charge versus time on a capacitor. Draw one for charging an initially uncharged capacitor in series with a resistor, as in the circuit in Figure 21.38, starting from t = 0. Draw the other for discharging a capacitor through a resistor, as in the circuit in Figure 21.39, starting at t = 0, with an initial charge Q0. Show at least two intervals of t.arrow_forward
- The values of the components in a simple series RC circuit containing a switch (Fig. P21.53) are C = 1.00 F, R = 2.00 106 , and = 10.0 V. At the instant 10.0 s after the switch is closed, calculate (a) the charge on the capacitor, (b) the current in the resistor, (c) the rate at which energy is being stored in the capacitor, and (d) the rate at which energy is being delivered by the battery.arrow_forwardThe severity of a shock depends on die magnitude of the current through your body. Would you prefer to be in series or in parallel with a resistance, such as the heating element of a toaster, if you were shocked by it? Explain.arrow_forwardConsider the circuit in Figure 21.29 and assume the batter has no internal resistance. (i) Just after the switch is closed, what is the current in the battery? (a) 0 (b) /2R (c) 2/R (d) /R (e) impossible to determine (ii) After a very long time, what is the current in the battery? Choose from the same choices.arrow_forward
- Consider a series RC circuit as in Figure P18.35 for which R = 1.00 M, C = 5.00 F, and = 30.0 V. Find (a) the time constant of the circuit and (b) the maximum charge on the capacitor after the switch is thrown closed. (c) Find the current in the resistor 10.0 s after the switch is closed. Figure P18.35 Problem 35 and 38.arrow_forwardA heart defibrillator being used on a patient has an RC time constant of 10.0 ms due to the resistance of the patient and the capacitance of the defibrillator. (a) If the defibrillator has an 8.00F capacitance, what is the resistance of the path through the patient? (You may neglect the capacitance of the patient and the resistance of the defibrillator.) (b) If the initial voltage is 12.0 kV, how long does it take to decline to 6.00x102 V?arrow_forward9/ The RC Circuit in the followshy Figure has and C=5MF. The Capacitor R=3 KL has Voldage 6 at t:o when the switch is closedo How long dbes it fake the Gapacitor to dischorge to 25% of Its Initial Valtage? Find the time Constant of the Circuit? C Vo-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY