Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
4th Edition
ISBN: 9780133178579
Author: Ross L. Finney
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2.1, Problem 77E

(a)

To determine

To explain:The reason to restrict the interval 0<θ<π2 to show that the right-hand limit of the function is 1.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given information:The function is limθ0(sinθ)θ=1 and the interval is 0<θ<π2 .

For the right hand limit of given function check the points close to θ=0 from the right side. All the points to the right side of the 0 are all positive.

The restrict interval to 0<θ<π2 is correct to find the right-hand limit because the right hand limit for the given function depends on the positive values of θ closer to 0.

(b)

To determine

To show:The area of ΔOAP is 12sinθ , the area of sector OAP is θ2 and area of ΔOAT is 12tanθ .

(b)

Expert Solution
Check Mark

Explanation of Solution

Given information:The figure is given below:

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 2.1, Problem 77E , additional homework tip  1

Proof:

The formula for the area of triangle is given by,

  Area=12×base×height

In ΔOAP , base OA is 1 and height AT is tanθ . So,

  Area of ΔOAT=12×1×tanθ=tanθ2

In ΔOAT , base OA is 1 and height is sinθ . So,

  Area of ΔOAP=12×1×sinθ=12sinθ

The formula for the area of a sector with radius r is given by,

  Area of sector=θ360°×πr2

The radius of the sector is 1 with central angle θ . So, the area of sector OAP is:

  Area of sector OAP=θ2π×π(1)2=θ2

Hence, it is proved that area of ΔOAP is 12sinθ , the area of sector OAP is θ2 and area of ΔOAT is 12tanθ .

(c)

To determine

To show:The inequality 12sinθ<12θ<12tanθ , for the interval 0<θ<π2 .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given information:The figure is given below:

  Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy), Chapter 2.1, Problem 77E , additional homework tip  2

Proof:

From part (b), it is proved that that area of ΔOAP is 12sinθ , the area of sector OAP is θ2 and area of ΔOAT is 12tanθ .

To prove the given inequality, compare the areas of ΔOAP , ΔOAT and sector OAP . From the figure it can observed that ΔOAP is contained in the sector OAP . So,

  12sinθ<12θ ...(1)

Also, the area of sector OAP contains under the region of ΔOAP . So,

  12θ<12tanθ ...(2)

Now, compare inequality (1) and (2).

  12sinθ<12θ<12tanθ

Hence, theinequality 12sinθ<12θ<12tanθ is proved, for the interval 0<θ<π2 .

(d)

To determine

To show:The inequality 12sinθ<12θ<12tanθ can be written as 1<θsinθ<1cosθ for the interval 0<θ<π2 .

(d)

Expert Solution
Check Mark

Explanation of Solution

Proof:

From part (c), for the interval 0<θ<π2 the inequality 12sinθ<12θ<12tanθ is proved.

Multiply the inequality by 2.

  2×12sinθ<2×12θ<122×tanθsinθ<θ<tanθ

Divide the inequality by sinθ .

  sinθsinθ<θsinθ<tanθsinθ1<θsinθ<sinθcosθ×1sinθ1<θsinθ<1cosθ

Hence, theinequality proved in part (c) can be written as 1<θsinθ<1cosθ , for the interval 0<θ<π2 .

(e)

To determine

To show:The inequality 1<θsinθ<1cosθ can be written as cosθ<sinθθ<1 for the interval 0<θ<π2 .

(e)

Expert Solution
Check Mark

Explanation of Solution

Proof:

From part (d), for the interval 0<θ<π2 the inequality 1<θsinθ<1cosθ is proved.

Use the inverse property of inequality and take the inverse of each term to rewrite the inequality.

  1>sinθθ>cosθcosθ<sinθθ<1

Hence, theinequality proved in part (d) can be written as cosθ<sinθθ<1 for the interval 0<θ<π2 .

(f)

To determine

To show:The result limθ0+sinθθ=1 by Sandwich theorem.

(f)

Expert Solution
Check Mark

Explanation of Solution

Proof:

Sandwich theorem: If a function f(x) lies between two functions such that g(x)f(x)h(x) for x=c and both functions have the same limit L , then

  limxcf(x)=L

From part (e), the condition for Sandwich theorem the inequality can be written as:

  cosθsinθθ1

The limit of the function cosθ at θ=0+ is:

  limθ0+cosθ=cos0=1

The limit of the function 1 at θ=0+ is:

  limθ0+1=1

Now, by Sandwich theorem limθ0+sinθθ=1 is also true.

Hence, theresult limθ0+sinθθ=1 is proved by Sandwich theorem.

(g)

To determine

To show:The function sinθθ is an even function.

(g)

Expert Solution
Check Mark

Explanation of Solution

Given information: The function is f(θ)=sinθθ .

Proof:

Even function: If f(x)=f(x) , then the function is said to be an even function.

Substitute θ for θ in the given function.

  f(θ)=sin(θ)(θ)=sinθθ=sinθθ=f(θ)

Hence, it is proved that sinθθ is an even function.

(g)

To determine

To show:The result limθ0sinθθ=1 by using that sinθθ is an even function.

(g)

Expert Solution
Check Mark

Explanation of Solution

Given information: The function is f(θ)=sinθθ .

Proof:

It is known that if a function is even function, then its graph is symmetric about the y -axis.

In part (f), it is already proved that the right-hand limit of the function at 0 is 1. From part (g), it is proved that that sinθθ is an even function. So, left hand limit is equal to the right hand limit.

The left hand limit is:

  limθ0sinθθ=1

Hence, the result limθ0sinθθ=1 is proved.

(h)

To determine

To show:The result limθ0sinθθ=1 .

(h)

Expert Solution
Check Mark

Explanation of Solution

Given information: The function is f(θ)=sinθθ .

Proof:

If the left hand limit and right hand limit of a function is equal, then the limit at that point is the same as RHL or LHL.

In above parts it is already proved that at θ=0 , the right hand limit limθ0+sinθθ=1 is equal to the left hand limit limθ0sinθθ=1 . So,

  limθ0sinθθ=1

Hence, the result limθ0sinθθ=1 is proved.

Chapter 2 Solutions

Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)

Ch. 2.1 - Prob. 1ECh. 2.1 - Prob. 2ECh. 2.1 - Prob. 3ECh. 2.1 - Prob. 4ECh. 2.1 - Prob. 5ECh. 2.1 - Prob. 6ECh. 2.1 - Prob. 7ECh. 2.1 - Prob. 8ECh. 2.1 - Prob. 9ECh. 2.1 - Prob. 10ECh. 2.1 - Prob. 11ECh. 2.1 - Prob. 12ECh. 2.1 - Prob. 13ECh. 2.1 - Prob. 14ECh. 2.1 - Prob. 15ECh. 2.1 - Prob. 16ECh. 2.1 - Prob. 17ECh. 2.1 - Prob. 18ECh. 2.1 - Prob. 19ECh. 2.1 - Prob. 20ECh. 2.1 - Prob. 21ECh. 2.1 - Prob. 22ECh. 2.1 - Prob. 23ECh. 2.1 - Prob. 24ECh. 2.1 - Prob. 25ECh. 2.1 - Prob. 26ECh. 2.1 - Prob. 27ECh. 2.1 - Prob. 28ECh. 2.1 - Prob. 29ECh. 2.1 - Prob. 30ECh. 2.1 - Prob. 31ECh. 2.1 - Prob. 32ECh. 2.1 - Prob. 33ECh. 2.1 - Prob. 34ECh. 2.1 - Prob. 35ECh. 2.1 - Prob. 36ECh. 2.1 - Prob. 37ECh. 2.1 - Prob. 38ECh. 2.1 - Prob. 39ECh. 2.1 - Prob. 40ECh. 2.1 - Prob. 41ECh. 2.1 - Prob. 42ECh. 2.1 - Prob. 43ECh. 2.1 - Prob. 44ECh. 2.1 - Prob. 45ECh. 2.1 - Prob. 46ECh. 2.1 - Prob. 47ECh. 2.1 - Prob. 48ECh. 2.1 - Prob. 49ECh. 2.1 - Prob. 50ECh. 2.1 - Prob. 51ECh. 2.1 - Prob. 52ECh. 2.1 - Prob. 53ECh. 2.1 - Prob. 54ECh. 2.1 - Prob. 55ECh. 2.1 - Prob. 56ECh. 2.1 - Prob. 57ECh. 2.1 - Prob. 58ECh. 2.1 - Prob. 59ECh. 2.1 - Prob. 60ECh. 2.1 - Prob. 61ECh. 2.1 - Prob. 62ECh. 2.1 - Prob. 63ECh. 2.1 - Prob. 64ECh. 2.1 - Prob. 65ECh. 2.1 - Prob. 66ECh. 2.1 - Prob. 67ECh. 2.1 - Prob. 68ECh. 2.1 - Prob. 69ECh. 2.1 - Prob. 70ECh. 2.1 - Prob. 71ECh. 2.1 - Prob. 72ECh. 2.1 - Prob. 73ECh. 2.1 - Prob. 74ECh. 2.1 - Prob. 75ECh. 2.1 - Prob. 76ECh. 2.1 - Prob. 77ECh. 2.1 - Prob. 78ECh. 2.1 - Prob. 79ECh. 2.1 - Prob. 80ECh. 2.2 - Prob. 1QRCh. 2.2 - Prob. 2QRCh. 2.2 - Prob. 3QRCh. 2.2 - Prob. 4QRCh. 2.2 - Prob. 5QRCh. 2.2 - Prob. 6QRCh. 2.2 - Prob. 7QRCh. 2.2 - Prob. 8QRCh. 2.2 - Prob. 9QRCh. 2.2 - Prob. 10QRCh. 2.2 - Prob. 1ECh. 2.2 - Prob. 2ECh. 2.2 - Prob. 3ECh. 2.2 - Prob. 4ECh. 2.2 - Prob. 5ECh. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - Prob. 8ECh. 2.2 - Prob. 9ECh. 2.2 - Prob. 10ECh. 2.2 - Prob. 11ECh. 2.2 - Prob. 12ECh. 2.2 - Prob. 13ECh. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - Prob. 16ECh. 2.2 - Prob. 17ECh. 2.2 - Prob. 18ECh. 2.2 - Prob. 19ECh. 2.2 - Prob. 20ECh. 2.2 - Prob. 21ECh. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - Prob. 32ECh. 2.2 - Prob. 33ECh. 2.2 - Prob. 34ECh. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.2 - Prob. 38ECh. 2.2 - Prob. 39ECh. 2.2 - Prob. 40ECh. 2.2 - Prob. 41ECh. 2.2 - Prob. 42ECh. 2.2 - Prob. 43ECh. 2.2 - Prob. 44ECh. 2.2 - Prob. 45ECh. 2.2 - Prob. 46ECh. 2.2 - Prob. 47ECh. 2.2 - Prob. 48ECh. 2.2 - Prob. 49ECh. 2.2 - Prob. 50ECh. 2.2 - Prob. 51ECh. 2.2 - Prob. 52ECh. 2.2 - Prob. 53ECh. 2.2 - Prob. 54ECh. 2.2 - Prob. 55ECh. 2.2 - Prob. 56ECh. 2.2 - Prob. 57ECh. 2.2 - Prob. 58ECh. 2.2 - Prob. 59ECh. 2.2 - Prob. 60ECh. 2.2 - Prob. 61ECh. 2.2 - Prob. 62ECh. 2.2 - Prob. 63ECh. 2.2 - Prob. 64ECh. 2.2 - Prob. 65ECh. 2.2 - Prob. 66ECh. 2.2 - Prob. 67ECh. 2.2 - Prob. 68ECh. 2.2 - Prob. 69ECh. 2.2 - Prob. 70ECh. 2.2 - Prob. 71ECh. 2.2 - Prob. 1QQCh. 2.2 - Prob. 2QQCh. 2.2 - Prob. 3QQCh. 2.2 - Prob. 4QQCh. 2.3 - Prob. 1QRCh. 2.3 - Prob. 2QRCh. 2.3 - Prob. 3QRCh. 2.3 - Prob. 4QRCh. 2.3 - Prob. 5QRCh. 2.3 - Prob. 6QRCh. 2.3 - Prob. 7QRCh. 2.3 - Prob. 8QRCh. 2.3 - Prob. 9QRCh. 2.3 - Prob. 10QRCh. 2.3 - Prob. 1ECh. 2.3 - Prob. 2ECh. 2.3 - Prob. 3ECh. 2.3 - Prob. 4ECh. 2.3 - Prob. 5ECh. 2.3 - Prob. 6ECh. 2.3 - Prob. 7ECh. 2.3 - Prob. 8ECh. 2.3 - Prob. 9ECh. 2.3 - Prob. 10ECh. 2.3 - Prob. 11ECh. 2.3 - Prob. 12ECh. 2.3 - Prob. 13ECh. 2.3 - Prob. 14ECh. 2.3 - Prob. 15ECh. 2.3 - Prob. 16ECh. 2.3 - Prob. 17ECh. 2.3 - Prob. 18ECh. 2.3 - Prob. 19ECh. 2.3 - Prob. 20ECh. 2.3 - Prob. 21ECh. 2.3 - Prob. 22ECh. 2.3 - Prob. 23ECh. 2.3 - Prob. 24ECh. 2.3 - Prob. 25ECh. 2.3 - Prob. 26ECh. 2.3 - Prob. 27ECh. 2.3 - Prob. 28ECh. 2.3 - Prob. 29ECh. 2.3 - Prob. 30ECh. 2.3 - Prob. 31ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 36ECh. 2.3 - Prob. 37ECh. 2.3 - Prob. 38ECh. 2.3 - Prob. 39ECh. 2.3 - Prob. 40ECh. 2.3 - Prob. 41ECh. 2.3 - Prob. 42ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 45ECh. 2.3 - Prob. 46ECh. 2.3 - Prob. 47ECh. 2.3 - Prob. 48ECh. 2.3 - Prob. 49ECh. 2.3 - Prob. 50ECh. 2.3 - Prob. 51ECh. 2.3 - Prob. 52ECh. 2.3 - Prob. 53ECh. 2.3 - Prob. 54ECh. 2.3 - Prob. 55ECh. 2.3 - Prob. 56ECh. 2.3 - Prob. 57ECh. 2.3 - Prob. 58ECh. 2.3 - Prob. 59ECh. 2.3 - Prob. 60ECh. 2.3 - Prob. 61ECh. 2.3 - Prob. 62ECh. 2.3 - Prob. 63ECh. 2.3 - Prob. 64ECh. 2.4 - Prob. 1QRCh. 2.4 - Prob. 2QRCh. 2.4 - Prob. 3QRCh. 2.4 - Prob. 4QRCh. 2.4 - Prob. 5QRCh. 2.4 - Prob. 6QRCh. 2.4 - Prob. 7QRCh. 2.4 - Prob. 8QRCh. 2.4 - Prob. 9QRCh. 2.4 - Prob. 10QRCh. 2.4 - Prob. 1ECh. 2.4 - Prob. 2ECh. 2.4 - Prob. 3ECh. 2.4 - Prob. 4ECh. 2.4 - Prob. 5ECh. 2.4 - Prob. 6ECh. 2.4 - Prob. 7ECh. 2.4 - Prob. 8ECh. 2.4 - Prob. 9ECh. 2.4 - Prob. 10ECh. 2.4 - Prob. 11ECh. 2.4 - Prob. 12ECh. 2.4 - Prob. 13ECh. 2.4 - Prob. 14ECh. 2.4 - Prob. 15ECh. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Prob. 19ECh. 2.4 - Prob. 20ECh. 2.4 - Prob. 21ECh. 2.4 - Prob. 22ECh. 2.4 - Prob. 23ECh. 2.4 - Prob. 24ECh. 2.4 - Prob. 25ECh. 2.4 - Prob. 26ECh. 2.4 - Prob. 27ECh. 2.4 - Prob. 28ECh. 2.4 - Prob. 29ECh. 2.4 - Prob. 30ECh. 2.4 - Prob. 31ECh. 2.4 - Prob. 32ECh. 2.4 - Prob. 33ECh. 2.4 - Prob. 34ECh. 2.4 - Prob. 35ECh. 2.4 - Prob. 36ECh. 2.4 - Prob. 37ECh. 2.4 - Prob. 38ECh. 2.4 - Prob. 39ECh. 2.4 - Prob. 40ECh. 2.4 - Prob. 41ECh. 2.4 - Prob. 42ECh. 2.4 - Prob. 43ECh. 2.4 - Prob. 44ECh. 2.4 - Prob. 45ECh. 2.4 - Prob. 46ECh. 2.4 - Prob. 47ECh. 2.4 - Prob. 48ECh. 2.4 - Prob. 49ECh. 2.4 - Prob. 50ECh. 2.4 - Prob. 51ECh. 2.4 - Prob. 52ECh. 2.4 - Prob. 53ECh. 2.4 - Prob. 54ECh. 2.4 - Prob. 55ECh. 2.4 - Prob. 1QQCh. 2.4 - Prob. 2QQCh. 2.4 - Prob. 3QQCh. 2.4 - Prob. 4QQCh. 2 - Prob. 1RECh. 2 - Prob. 2RECh. 2 - Prob. 3RECh. 2 - Prob. 4RECh. 2 - Prob. 5RECh. 2 - Prob. 6RECh. 2 - Prob. 7RECh. 2 - Prob. 8RECh. 2 - Prob. 9RECh. 2 - Prob. 10RECh. 2 - Prob. 11RECh. 2 - Prob. 12RECh. 2 - Prob. 13RECh. 2 - Prob. 14RECh. 2 - Prob. 15RECh. 2 - Prob. 16RECh. 2 - Prob. 17RECh. 2 - Prob. 18RECh. 2 - Prob. 19RECh. 2 - Prob. 20RECh. 2 - Prob. 21RECh. 2 - Prob. 22RECh. 2 - Prob. 23RECh. 2 - Prob. 24RECh. 2 - Prob. 25RECh. 2 - Prob. 26RECh. 2 - Prob. 27RECh. 2 - Prob. 28RECh. 2 - Prob. 29RECh. 2 - Prob. 30RECh. 2 - Prob. 31RECh. 2 - Prob. 32RECh. 2 - Prob. 33RECh. 2 - Prob. 34RECh. 2 - Prob. 35RECh. 2 - Prob. 36RECh. 2 - Prob. 37RECh. 2 - Prob. 38RECh. 2 - Prob. 39RECh. 2 - Prob. 40RECh. 2 - Prob. 41RECh. 2 - Prob. 42RECh. 2 - Prob. 43RECh. 2 - Prob. 44RECh. 2 - Prob. 45RECh. 2 - Prob. 46RECh. 2 - Prob. 47RECh. 2 - Prob. 48RECh. 2 - Prob. 49RECh. 2 - Prob. 50RECh. 2 - Prob. 51RECh. 2 - Prob. 52RECh. 2 - Prob. 53RECh. 2 - Prob. 54RECh. 2 - Prob. 55RE
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY