There has long been an interest in using the vast quantities of
thermal energy in the oceans to run heat engines. A
needs a temperature difference. a hot side and a cold side. Conve-
niently, the ocean surface waters are warmer than the deep ocean
waters. Suppose you build a floating power plant in the tropics
where the surface water temperature is 30°C. This would be
the hot reservoir of the engine. For the cold reservoir, water would
be pumped up from the ocean bottom where it is always 5°C.
What is the maximum possible efficiency of such a power plant?
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
- Consider these scenarios and state whether work is done by the system on the environment (SE) or by the environment on the system (ES): (a) opening a carbonated beverage; (b) filling a flat tire; (c) a sealed empty gas can expands on a hot day, bowing out the walls.arrow_forwardA car salesperson claims that a 300-hp engine is a necessary option in a compact car, in place of the conventional 130-hp engine. Suppose you intend to drive the car within speed limits ( 65 mi/h) on flat terrain. How would you counter this sales pitch?arrow_forward(a) What is the best coefficient of performance for a refrigerator that cools an environment at 30.0C and has heat transfer to another environment at 45.0C ? (b) How much work in joules must be done for a heat transfer of 4186 kJ from the cold environment? (c) What is the cost of doing this if the work costs 10.0 cents per 3.60106J (a kilowatthour)? (d) How many kJ of heat transfer occurs into the warm environment? (e) Discuss what type of refrigerator might operate between these temperatures.arrow_forward
- (a) On a winter day, a certain house loses 5.00108J of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 21.0C and an average outdoor temperature of 5.00C ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?arrow_forwardUse a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardGas is sealed within a beaker with a movable piston top. You decide to place the beaker into a bucket of ice, which causes 60 J of heat to flow out of the beaker. You also push down on the top, compressing the gas inside and doing 20 J of work. What is the change in internal energy, in Joules, for the gas in the beaker?arrow_forward
- At a power plant that produces 1 GW (109 watts) of electricity, the steam turbines take in steam at a temperature of 500°C, and the waste heat is expelled into the environment at 20°C. What is the maximum possible efficiency of this plant?arrow_forwardWhat is the maximum efficiency of a heat engine operating between a hot heat reservoir at 800 K and a cold heat reservoir at 300 K?arrow_forwardAs a gasoline engine is running, the amount of gasoline containing 15,000J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000J of work. The burning gasoline has a temperature of about 2500 K. The waste heat from the engine flows into the air at about 300 K. What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forward
- Would you be willing to financially back an inventor who is marketing a device that she claims has 25 kJ of heat transfer at 600o K, has heat transfer to the environment at 300o K, and does 12 kJ of work? Explain your answer.arrow_forwardIn a process of an ideal gas, the pressure is halved while the volume is kept constant. During this process, 750J of heat flows out of gas. What is the change in the internal energy of the gas in this process?arrow_forwardFirst Law of Thermodynamics. You do 10,000 J of work on a system of 3.00kg water by stirring it with a paddle wheel. During this time, 10,000 calories of heat is added. What is change in the internal energy of the system? (1 calorie = 4.18 Joules)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning