Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 3SOP
The radius of Mars is about 3400 km, and its moons Phobos and Deimos orbit 9600 km and 23,500 km from the center of the planet. Design a model in which Mars is 5 in. in radius. How far away from the center of the planet would the two moons orbit?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Imagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.
The region between Mars and Jupiter, where asteroids lie, extends from 1.52-5.20 AU from the Sun. To find the distance between Mars and this asteroid as a fraction of the total distance between Mars and
Jupiter, we simply take their ratios:
dma
f =
dmj
f =
You are making a scale model to visualize the relative sizes of the planets in our solar system. The scale of the model is: 1 cm = 2000 km. The radius of Saturn is 60,000 km. At what radius will Saturn appear on your scale model?
Chapter 21 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 21 - Describe four ways Venus is similar to Earth...Ch. 21 - Why might you expect that Venuss surface...Ch. 21 - Describe and explain changes in Venuss surface...Ch. 21 - Describe sources and sinks of CO2, if any, on...Ch. 21 - Does Venuss surface experience meteorite impacts...Ch. 21 - Describe evidence of crustal movement (horizontal...Ch. 21 - Why isnt the crust of Venus broken into mobile...Ch. 21 - Do either Venus or Mars have composite volcanoes?...Ch. 21 - What evidence can you give that Venus once had...Ch. 21 - What evidence shows that Venus has been resurfaced...
Ch. 21 - Describe four ways Mars is similar to Earth today....Ch. 21 - How are todays atmospheres of Venus and Mars...Ch. 21 - Where is the oxygen on Mars today? How do you...Ch. 21 - Why doesnt Mars have folded mountain ranges like...Ch. 21 - Why isnt the crust of Mars broken into mobile...Ch. 21 - What were the canals on Mars eventually found to...Ch. 21 - How can planetary scientists estimate the ages of...Ch. 21 - Propose an explanation for the nearly pure CO2...Ch. 21 - Prob. 19RQCh. 21 - Describe sources and sinks of CO2, if any, on Mars...Ch. 21 - Does Marss surface experience any meteorite...Ch. 21 - Describe evidence of crustal movement (horizontal...Ch. 21 - What surface features on Mars today indicate that...Ch. 21 - Why are Phobos and Deimos non-spherical? Why is...Ch. 21 - How are a weather radar map and an image of a...Ch. 21 - Atmospheric jet streams on Venus travel at about...Ch. 21 - How long would radio signals take to travel from...Ch. 21 - What is the maximum angular diameter of Venus as...Ch. 21 - The Pioneer Venus orbiter circled Venus with a...Ch. 21 - Calculate the velocity of Venus as it orbits the...Ch. 21 - Prob. 6PCh. 21 - If the Magellan spacecraft transmitted radio...Ch. 21 - Prob. 8PCh. 21 - What is the angular size of Phobos observed from...Ch. 21 - Prob. 10PCh. 21 - Prob. 11PCh. 21 - Deimos is about 13 km in diameter and has a...Ch. 21 - Prob. 1SOPCh. 21 - Mercury averages only 0.39 AU from the Sun, Venus...Ch. 21 - The radius of Mars is about 3400 km, and its moons...Ch. 21 - Look at Figure 21-1. Compare temperature profiles...Ch. 21 - Look at the map of the Hawaiian chain of islands...Ch. 21 - Look at Figure 21-11. Which molecule(s) can escape...Ch. 21 - Volcano Sif Mons on Venus is shown in this radar...Ch. 21 - Olympus Mons on Mars is an enormous volcano. In...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Between mars and Jupiter the asteroid ceres orbits the sun at an average radius of 2.766 AU. Use kelpers third law to calculate the time in earth it takes for ceres to make one complete orbit. Round up your answer to the correct number of significant digits.arrow_forwardMars has two moons, Phobos and Deimos. Phobos orbits Mars with an orbital period of 8 hours while Deimos orbits every 30.3 hours. What are the semi-major axes of each satellite?arrow_forwardThe day on Mars is 1.026 Earth-days long. The martian year lasts 686.98 Earth-days. The two moons of Mars take 0.32 Earth-day (for Phobos) and 1.26 Earth-days (for Deimos) to circle the planet. You are given the task of coming up with a martian calendar for a new Mars colony. Would a solar or lunar calendar be better for tracking the seasons?arrow_forward
- Explain the differences between the Grand Canyon on Earth and Valles Marineris on Mars.arrow_forwardWhich of the following is not a physical characteristic of a terrestrial planet? (16.4) (a) small diameter (b) solid surface (c) relatively low density (d) relatively high-temperature environmentarrow_forwardContrast the mountains on Mars and Venus with those on Earth and the Moon.arrow_forward
- The Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed. Calculate the synodic period (in years) using the following formula: 1/Psyn = (1/PEarth) - (1/PMars) where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars. If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!arrow_forwardAs an aspiring science fiction author, you are writing about a space-faring race and their home planet, Krypton, which has one moon. This moon takes 1,702,948 seconds to complete an orbit around Krypton. If the distance from the center of the moon to the surface of Krypton is 462.5 x 106 m and the planet has a radius of 37.2 x 106 m, calculate the moon's centripetal acceleration. Your Answer: Answerarrow_forwardSpeaking of Mercury, approximately how long is one year on the planet closest to the Sun? The sizes of the objects in our model of the solar system are not to scale; however, the relative orbital periods around the Sun are. So you can answer this question by counting the revolutions of Mercury during one Earth year. a) Approximately 90 Earth days b) Approximately 370 Earth days c) Approximately 120 Earth days d) Approximately 50 Earth daysarrow_forward
- I. Directions: Complete the given table by finding the ratio of the planet's time of revolution to its radius. Average Radius of Orbit Times of Planet R3 T2 T?/R3 Revolution Mercury 5.7869 x 1010 7.605 x 106 Venus 1.081 x 1011 1.941 x 107 Earth 1.496 x 1011 3.156 x 107 1. What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support? II. Solve the given problems. Write your solution on the space provided before each number. 1. You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. Find the following: a) Speed b) Period c) Radial Acceleration Given: Unknown: Formula: Solution: Answer: Given: Unknown: Formula: Solution: Answer: Given: Unknown: Formula: Solution: Answer:arrow_forwardThe Msbar Alamal on its journey to Mars took a 7-month period, during which it traveled an estimated distance of 493 million kilometers. What was the distance covered during a 7-day period?arrow_forwardDione, a moon of Saturn, has an orbital radius of 377,400 km, and an orbital period of about 2.737 Earth days. Find the orbital period of Rhea, another moon of Saturn, which has an orbital radius of 527,040 km. Find the period in Earth days. Round to the nearest hundredth. Don't worry about putting the unit, just put the answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY