Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 35P
To determine
The most probable speed of a helium atom.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Oxygen (O2, with molar mass 32.0 g/mol) gas at 269 K and 1.02 atm is confined to a cubical container 9.50 cm on a side. Calculate ΔUg/Kavg, where ΔUg is the change in the gravitational potential energy of an oxygen molecule falling the height of the box and Kavg is the molecule's average translational kinetic energy.
A)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.)
B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.)
C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)
What is the value of the compressibility factor, Z. when the volume of 1 mol of a real gas is smaller than that of 1 mol of an ideal gas at constant pressure and temperature?
7 < 1
Z = 1
Z>1
Z cannot be determined
Chapter 21 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 21.1 - Two containers hold an ideal gas at the same...Ch. 21.2 - (i) How does the internal energy of an ideal gas...Ch. 21.3 - Prob. 21.3QQCh. 21.3 - Prob. 21.4QQCh. 21 - Prob. 1OQCh. 21 - Prob. 2OQCh. 21 - Prob. 3OQCh. 21 - Prob. 4OQCh. 21 - Prob. 5OQCh. 21 - Prob. 6OQ
Ch. 21 - Prob. 7OQCh. 21 - Prob. 8OQCh. 21 - Prob. 9OQCh. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Prob. 6CQCh. 21 - Prob. 7CQCh. 21 - Prob. 1PCh. 21 - Prob. 2PCh. 21 - Prob. 3PCh. 21 - Prob. 4PCh. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Prob. 8PCh. 21 - Prob. 9PCh. 21 - Prob. 10PCh. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - Prob. 15PCh. 21 - Prob. 16PCh. 21 - Prob. 17PCh. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - Prob. 23PCh. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 25PCh. 21 - Prob. 26PCh. 21 - During the compression stroke of a certain...Ch. 21 - Prob. 28PCh. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Prob. 35PCh. 21 - Prob. 36PCh. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - Prob. 39PCh. 21 - Prob. 40PCh. 21 - Prob. 41PCh. 21 - Prob. 42PCh. 21 - Prob. 43PCh. 21 - Prob. 44APCh. 21 - Prob. 45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 48APCh. 21 - Prob. 49APCh. 21 - Prob. 50APCh. 21 - Prob. 51APCh. 21 - Prob. 52APCh. 21 - Prob. 53APCh. 21 - Prob. 54APCh. 21 - Prob. 55APCh. 21 - Prob. 56APCh. 21 - Prob. 57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - Prob. 60APCh. 21 - Prob. 61APCh. 21 - Prob. 62APCh. 21 - Prob. 63APCh. 21 - Prob. 64APCh. 21 - Prob. 65APCh. 21 - Prob. 66APCh. 21 - Prob. 67APCh. 21 - Prob. 68APCh. 21 - Prob. 69APCh. 21 - Prob. 70APCh. 21 - Prob. 71APCh. 21 - Prob. 72APCh. 21 - Prob. 73APCh. 21 - Prob. 74CPCh. 21 - Prob. 75CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardTwo containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardOne cylinder contains helium gas and another contains krypton gas at the same temperature. Mark each of these statements true, false, or impossible to determine from the given information. (a) The rms speeds of atoms in the two gases are the same. (b) The average kinetic energies of atoms in the two gases are the same. (c) The internal energies of 1 mole of gas in each cylinder are the same. (d) The pressures in the two cylinders ale the same.arrow_forward
- How many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardThe mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardHelium gas is in thermal equilibrium with liquid helium at 4.20 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of a helium atom (mass = 6.64 1027 kg) in it.arrow_forward
- One cylinder contains helium gas (atomic weight = 4.0 g/mol) and another contains argon gas(atomic weight = 40 g/mol) at the same %3D temperature. The average kinetic energies of atoms in the two gases are the same. Select one: True Falsearrow_forwardA 7.00-L vessel contains 3.50 moles of ideal gas at a pressure of 1.60 x 106 Pa. Find (a) the temperature of the gas and (b) the average kinetic energy of a gas molecule in the vessel. (c) What additional information would you need if you were asked to find the average speed of a gas molecule?arrow_forwardThe most probable speed for molecules of a gas at 296 K is 263 m/s. What is the molar mass of the gas? (You might like to figure out what the gas is likely to be.)arrow_forward
- The temperature of 3.00 moles of argon gas is lowered from 2.50 102 K to 2.00 102 K. (a) Find the change in the internal energy, ΔU, of the gas. J(b) Find the change in the average kinetic energy per atom.arrow_forwardAt what temperature is the rms speed of a molecule of hydrogen gas equal to 2000 m/s? The mass of a hydrogen molecule is 3.340×10^-27 kg. If you wished to reduce the rms speed of the molecules in hydrogen gas to 1000 m/s, what temperature would be required?arrow_forward5.00 grams of monatomic ideal gas is in a 0.500 m³ container. The molecular rms speed of the gas is 4.50×10 m/s. If the molecular weight of the gas is 44.0 grams, a) What is the temperature of the gas? b) What is the pressure of the gas? c) What is the total internal energy of the gas?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY