Concept explainers
(a)
The rms speed of the molecule for a particular diameter.
(a)
Answer to Problem 61AP
The rms speed of the molecule is
Explanation of Solution
Write the expression for volume of the particle.
Here,
Write the expression for mass in terms of density and volume.
Here,
Write the expression for kinetic energy of the particle.
Here,
Conclusion:
Substitute equation (I) in equation (II).
Here,
Substitute above equation in the equation (III) instead of mass.
Substitute
Here,
Therefore, the rms speed of the molecule is
(b)
The time interval of the particle’s actual motion.
(b)
Answer to Problem 61AP
The time interval of the particle’s actual motion is
Explanation of Solution
Write the expression for the distance of the particle equal to its dimeter.
Here,
Rearrange the above equation for
Conclusion:
Substitute
Here,
Therefore, the number of moles of air in the pump is
(c)
The rms speed and time interval of the particle for diameter
(c)
Answer to Problem 61AP
The rms speed is
Explanation of Solution
Write the expression for rms speed of the particle.
Conclusion:
Substitute
Substitute
Therefore, the rms speed is
(d)
The rms speed and time interval of the particle for a sphere.
(d)
Answer to Problem 61AP
The rms speed is
Explanation of Solution
Write the expression for mass of an object in terms of density and volume.
Rearrange the above expression for
Conclusion:
Substitute
Substitute
Substitute
Therefore, the rms speed is
Want to see more full solutions like this?
Chapter 21 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning