(a.)
To sketch: a graph of elevation
(a.)
Answer to Problem 30E
The required graph is shown.
Explanation of Solution
Given:
Elevation Along Bear Creek | |
Distance Downriver | River Elevation |
0.00 | 1577 |
0.56 | 1512 |
0.92 | 1448 |
1.19 | 1384 |
1.30 | 1319 |
1.39 | 1255 |
1.57 | 1191 |
1.74 | 1126 |
1.98 | 1062 |
2.18 | 998 |
2.41 | 933 |
2.64 | 869 |
3.24 | 805 |
Calculation:
Plot the points on graph and join them
(b.)
To obtain: an approximate graph of the derivative.
(b.)
Answer to Problem 30E
The graph of the derivative is shown.
Explanation of Solution
Given:
Elevation Along Bear Creek | |
Distance Downriver | River Elevation |
0.00 | 1577 |
0.56 | 1512 |
0.92 | 1448 |
1.19 | 1384 |
1.30 | 1319 |
1.39 | 1255 |
1.57 | 1191 |
1.74 | 1126 |
1.98 | 1062 |
2.18 | 998 |
2.41 | 933 |
2.64 | 869 |
3.24 | 805 |
Concept used:
The derivative of a function is represented by slope of graph.
Calculation:
Create a table with mid point of each interval and their respective slopes.
Elevation Along Bear Creek | |
Distance Downriver | River Elevation |
Now plot the above points on the graph and join them.
(c.)
The units of measure would be appropriate for a gradient in this problem.
(c.)
Answer to Problem 30E
The unit of gradient is feet per mile.
Explanation of Solution
Given:
Elevation Along Bear Creek | |
Distance Downriver (miles) | River Elevation (feet) |
0.00 | 1577 |
0.56 | 1512 |
0.92 | 1448 |
1.19 | 1384 |
1.30 | 1319 |
1.39 | 1255 |
1.57 | 1191 |
1.74 | 1126 |
1.98 | 1062 |
2.18 | 998 |
2.41 | 933 |
2.64 | 869 |
3.24 | 805 |
Concept used:
The average change in elevation over a given distance is called a gradient.
Conclusion:
Here, the elevation is given in feet and the distance down the river is given in miles.
Thus, the units of the gradient will be feet per mile.
(d.)
The units of measure would be appropriate for derivative.
(d.)
Answer to Problem 30E
The units of the gradient will be feet per mile.
Explanation of Solution
Given:
Elevation Along Bear Creek | |
Distance Downriver (miles) | River Elevation (feet) |
0.00 | 1577 |
0.56 | 1512 |
0.92 | 1448 |
1.19 | 1384 |
1.30 | 1319 |
1.39 | 1255 |
1.57 | 1191 |
1.74 | 1126 |
1.98 | 1062 |
2.18 | 998 |
2.41 | 933 |
2.64 | 869 |
3.24 | 805 |
Concept used:
Derivative is given by the slope.
Here, the average change in elevation over a given distance is slope.
Conclusion:
Here, the elevation is given in feet and the distance down the river is given in miles.
Thus, the units of the gradient will be feet per mile.
(e)
To identify: The most dangerous section of the river by analyzing the graph in (a).
(e)
Answer to Problem 30E
The most dangerous section of the river is from 1.2 to 1.5 miles.
Explanation of Solution
Given:
Elevation Along Bear Creek | |
Distance Downriver (miles) | River Elevation (feet) |
0.00 | 1577 |
0.56 | 1512 |
0.92 | 1448 |
1.19 | 1384 |
1.30 | 1319 |
1.39 | 1255 |
1.57 | 1191 |
1.74 | 1126 |
1.98 | 1062 |
2.18 | 998 |
2.41 | 933 |
2.64 | 869 |
3.24 | 805 |
Conclusion:
In the graph, the steepest part which is from 1.2 to 1.5 miles.
Chapter 2 Solutions
Advanced Placement Calculus Graphical Numerical Algebraic Sixth Edition High School Binding Copyright 2020
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forwardwrite it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning