PEARSON ETEXT ENGINEERING MECH & STATS
PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 22P

If a body contains no planes of symmetry, the principal moments of inertia can be determined mathematically. To show how this is done, consider the rigid body which is spinning with an angular velocity ω, directed along one of its principal axes of inertia. If the principal moment of inertia about this axis is I, the angular momentum can be expressed as H = = x i + y j + z k. The components of H may also be expressed by Eqs. 21–10, where the inertia tensor is assumed to be known. Equate the i, j, and k components of both expressions for H and consider ωx, ωy, and ωz to be unknown. The solution of these three equations is obtained provided the determinant of the coefficients is zero. Show that this determinant, when expanded, yields the cubic equation

I3(Ixx + Iyy + Izz)I2

Blurred answer
Students have asked these similar questions
Please whats the true option of these parts of wues
Combustion gases from the exhaust of a boiler that come out at 300 °C and 1 atm, are usedto preheat to preheat water in an industrial facility by passing them through a benchof tubes, within which there is a mass flow of liquid water of 6 kg/s. TemperatureThe average wall surface of all pipes is 80°C.  Gases enter the bank ofPerpendicular shaped tubes with a velocity of 4.5 m/s. The outer diameter of the tubes isof 2.1 cm, which are arranged in a manner aligned with longitudinal and transverse steps ofSL = ST = 8 cm. There are 16 columns in the direction of flow with eight tubes in each.Whereas exhaust gases have properties very similar to atmospheric air,Calculate the following:a) The average coefficient of heat transfer by convection, in [W/m2K]. (b) The amount of heat transferred per unit length of the tubes, in [W/m] c) The pressure drop through the tube bank, in [kPa]
During a visit to a plastic sheet factory, it is observed that a section of 45 mlength of a steam pipe, with a nominal diameter of 2 inches (6.03 cm in diameter)Outdoor plant) extends from one end of the plant to the other without any insulation. TheTemperature measurements at various points on the tube surface gave an average value170 °C, while the surrounding air temperature is 20 °C.  The outer surfaceof the pipe is oxidized and its emissivity is 0.7 on average with a temperature of thearound 22 °C.  Calculate the following:(a) The coefficient of convective heat transfer for the air surrounding the pipe.b) The amount of heat lost by convection and radiationc) The amount of energy that is lost in a full day, assuming conditions ofconstant temperature.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY