Concept explainers
A Population of Foxes A breeding group of foxes is introduced into a protected are and exhibits logistic population growth. After t years, the number of foxes is given by
a. How many foxes were introduced into the protected area?
b. Calculate
c. Explain how the population varies with time. Include in your explanation the average rate of increase over the first 10-year period and the average rate of increase over the second 10-year period.
d. Find the carrying capacity for foxes in the protected area.
e. As we saw in the discussion of terminal velocity for a skydiver, the question of when the carrying capacity is reached may lead to an involved discussion. We ask the question differently. When is 99% of carrying capacity reached?
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
FUNCTIONS+CHANGE -WEBASSIGN
Additional Math Textbook Solutions
College Algebra (6th Edition)
College Algebra with Modeling & Visualization (6th Edition)
College Algebra (Collegiate Math)
Algebra and Trigonometry (6th Edition)
Prealgebra (7th Edition)
- Buffalo: Waterton Lakes National Park of Canada, where the Great Plains dramatically meet the Rocky Mountains in Alberta, has a migratory buffalo bison herd that spends falls and winters in the park. The herd is currently managed and so kept small; however, if it were unmanaged and allowed to grow, then the number N of buffalo in the herd could be estimated by the logistic formula N=3151+14e0.23t Here t is the number of years since the beginning of 2002, the first year the herd is unmanaged. a. Make a graph of N versus t covering the next 30 years of the herds existance corresponding to dates up to 2032. b. How many buffalo are in the herd at the beginning of 2002? c. When will the number of buffalo first exceed 300?. d. How many buffalo will there eventually be in the herd? e. When is the graph of N, as a function of t, concave up? When is it concave down? What does this mean in terms of the growth of the buffalo herd?.arrow_forwardThe fox population in a certain region has an annualgrowth rate of 9 per year. In the year 2012, therewere 23,900 fox counted in the area. What is the foxpopulation predicted to be in the year 2020 ?arrow_forwardMaria, a biologist is observing the growth pattern of a virus. She starts with 100 of the virus that grows at a rate of 10% per hour. She will check on the virus in 24 hours. How many viruses will she find?arrow_forward
- The Decibel scale Exercise S-7 through S-10 refer to the decibel scale. If one sound has a relative intensity one-tenth that of another, how do their decibel levels compare?arrow_forwardThe population of a lake of fish is modeled by the logistic equation P(t)=16,1201+25e0.75t, where t is time inyears. To the unrest hundredth, how manyyears will it take the lake to reach 80% of its carrying capacity?For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table.Observe the shape of the scatter diagram to determine whether the data is best described by an exponential,logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models thedata. When necessary, round values to five decimal places.arrow_forwardGrowth Rate Versus Weight Ecologists have studied how a populations intrinsic exponential growth rate r is related to the body weight W for herbivorous mammals. In table 5.2, W is the adult weight measured in pounds, and r is growth rate per year. Animal Weight W r Short-tailed vole 0.07 4.56 Norway rat 0.7 3.91 Rue deer 55 0.23 White-tailed deer 165 0.55 American elk 595 0.27 African elephant 8160 0.06 Find a formula that models r as a power function of W, and draw a graph of this function.arrow_forward
- What is the y -intercept of the logistic growth model y=c1+aerx ? Show the steps for calculation. What does this point tell us about the population?arrow_forwardModeling Human Height with a Logistic Function A male child is 21inches long at birth and grows to an adult height of 73inches. In this exercise, we make a logistic model of his height as a function of age. a. Use the given information to find K and b for the logistic model. b. Suppose he reaches 95 of his adult height at age 16. Use this information and that from part a to find r. Suggestion: You will need to use either the crossing-graphs method or some algebra involving the logarithm. c. Make a logistic model for his height H, in inches, as a function of his age t, in years. d. According to the logistic model, at what age is he growing the fastest? e. Is your answer to part d consistent with your knowledge of how humans grow?arrow_forwardEastern Pacific Yellowfin Tuna Studies to fit a logistic model to the Eastern Pacific yellowfin tuna population have yielded N=1481+36e2.61t where t is measured in years and N is measured in thousands of tons of fish. a. What is the r value for the Eastern Pacific yellowfin tuna? b. What is the carrying capacity K for the Eastern Pacific yellowfin tuna? c. What is the optimum yield level? d. Use your calculator to graph N versus t. e. At what time was the population growing the most rapidly?arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning