Concept explainers
Expand Your knowledge: Decimal Data The fallowing data represent tonnes of wheat harvested each year (1894-1925) from Plot 19 at the Rothamsted Agricultural Experiment Stations, England.
2.71 | 1.62 | 2.60 | 1.64 | 2.20 | 2.02 | 1.67 | 1.99 | 2.34 | 1.26 | 1.31 |
1.80 | 2.82 | 2.15 | 2.07 | 1.62 | 1.47 | 2.19 | 0.59 | 1.48 | 0.77 | 1.04 |
1.32 | 0.89 | 1.35 | 0.95 | 0.94 | 1.39 | 1.19 | 1.18 | 0.46 | 0.70 |
(a) Multiply each data value by 100 to “clear" the decimals.
(b) Use the standard procedures of this section to make a frequency table and histogram with your whole-number data. Use six classes.
(c) Divide class limits, class boundaries, and class midpoints by 100 to get back to your original data values.
(a)
To find: The data that are multiply with 100 for each value in the data..
Answer to Problem 21P
Solution: The data multiply with 100 for each value in the data is as follows:
data | data*100 | data | data*100 | data | data*100 | data | data*100 |
2.71 | 271 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 |
1.62 | 162 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 |
2.6 | 260 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
Explanation of Solution
Calculation: The data represent the tons of wheat harvested each year and there are 32 values in the data set. To find the decimal data in to “clear” data that multiply with each value in the data by 100. The calculation is as follows:
Data | Data*100 | Data | Data*100 | Data | Data*100 | Data | Data*100 |
2.71 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 | |
1.62 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 | |
2.6 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 | |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
Interpretation: Hence, the data multiplied with 100 is as follows:
Data | Data*100 | Data | Data*100 | Data | Data*100 | Data | Data*100 |
2.71 | 271 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 |
1.62 | 162 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 |
2.6 | 260 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
(b)
To find: The class width, class limits, class boundaries, midpoint, frequency, relative frequency, and cumulative frequency of the data..
Answer to Problem 21P
Solution: The complete frequency table is as follows:
class limits | class boundaries | midpoints | freq | relative freq | cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
Explanation of Solution
Calculation: To find the class width for the whole data of 32 values, it is observed that largest value of the data set is 282 and the smallest value is 46 in the data. Using 6 classes, the class width calculated in the following way:
The value is round up to the nearest whole number. Hence, the class width of the data set is 40. The class width for the data is 40 and the lowest data value (46) will be the lower class limit of the first class. Because the class width is 40, it must add 40 to the lowest class limit in the first class to find the lowest class limit in the second class. There are 6 desired classes. Hence, the class limits are 46–85, 86–125, 126–165, 166–205, 206–245, and 246–285. Now, to find the class boundaries subtract 0.5 from lower limit of every class and add 0.5 to the upper limit of every class interval. Hence, the class boundaries are 45.5–85.5, 85.5–125.5, 125.5–165.5, 165.5–205.5, 205.5–245.5, and 245.5–285.5.
Next to find the midpoint of the class is calculated by using formula,
Midpoint of first class is calculated as:
The frequencies for respective classes are 4, 5, 10, 5, 5, and 3.
Relative frequency is calculated by using the formula
The frequency for 1st class is 4 and total frequencies are 32 so the relative frequency is
The calculated frequency table is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq | Cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
Graph: To construct the histogram by using the MINITAB, the steps are as follows:
Step 1: Enter the class boundaries in C1 and frequency in C2.
Step 2: Go to Graph > Histogram > Simple.
Step 3: Enter C1 in Graph variable then go to Data options > Frequency > C2.
Step 4: Click on OK.
The obtained histogram is as follows:
Interpretation: Hence, the complete frequency table is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq | Cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
(c)
To find: The class limits, class boundaries, and midpoints in the table by dividing 100..
Answer to Problem 21P
Solution: The frequency table of original data is as:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Explanation of Solution
Calculation: The frequency table for whole number is obtained in above part. It is the data that multiply each value by 100 to ‘clear’ decimals from the data. The frequency table for whole number is as follows:
class limits | class boundaries | Midpoints |
46-85 | 45.5-85.5 | 65.5 |
86-125 | 85.5-125.5 | 105.5 |
126-165 | 125.5-165.5 | 145.5 |
166-205 | 165.5-205.5 | 185.5 |
206-245 | 205.5-245.5 | 225.5 |
246-285 | 245.5-285.5 | 265.5 |
To find the decimal or original data, divide the class limits, class boundaries and midpoints by 100. The calculation as follows:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Interpretation: Hence, the data divide by 100 is as:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Want to see more full solutions like this?
Chapter 2 Solutions
Understanding Basic Statistics
- Let X be a random variable with support SX = {−3, 0.5, 3, −2.5, 3.5}. Part ofits probability mass function (PMF) is given bypX(−3) = 0.15, pX(−2.5) = 0.3, pX(3) = 0.2, pX(3.5) = 0.15.(a) Find pX(0.5).(b) Find the cumulative distribution function (CDF), FX(x), of X.1(c) Sketch the graph of FX(x).arrow_forwardA well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward
- 8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt