CP A thin disk with a circular hole at its center, called an annulus , has inner radius R 1 and outer radius R 2 ( Fig. P21.91 ). The disk has a uniform positive surface charge density σ on its surface. (a) Determine the total electric charge on the annulus. (b) The annulus lies in the yz -plane, with its center at the origin. For an arbitrary point the x -axis (the axis of the annulus), find the magnitude and direction of the electric field E → . Consider points both above and below the annulus. (c) Show that at points on the x -axis that are sufficiently close to the origin, the magnitude of the electric field is approximately proportional to the distance between the center of the annulus and the point. How close is “sufficiently close”? (d) A point particle with mass m and negative charge − q is free to move along the x -axis (but cannot move off the axis). The particle is originally placed at rest at x = 0.01 R 1 and released. Find the frequency of oscillation of the particle. ( Hint: Review Section 14.2. The annulus is held stationary.) Figure P21.91
CP A thin disk with a circular hole at its center, called an annulus , has inner radius R 1 and outer radius R 2 ( Fig. P21.91 ). The disk has a uniform positive surface charge density σ on its surface. (a) Determine the total electric charge on the annulus. (b) The annulus lies in the yz -plane, with its center at the origin. For an arbitrary point the x -axis (the axis of the annulus), find the magnitude and direction of the electric field E → . Consider points both above and below the annulus. (c) Show that at points on the x -axis that are sufficiently close to the origin, the magnitude of the electric field is approximately proportional to the distance between the center of the annulus and the point. How close is “sufficiently close”? (d) A point particle with mass m and negative charge − q is free to move along the x -axis (but cannot move off the axis). The particle is originally placed at rest at x = 0.01 R 1 and released. Find the frequency of oscillation of the particle. ( Hint: Review Section 14.2. The annulus is held stationary.) Figure P21.91
CP A thin disk with a circular hole at its center, called an annulus, has inner radius R1 and outer radius R2 (Fig. P21.91). The disk has a uniform positive surface charge density σ on its surface. (a) Determine the total electric charge on the annulus. (b) The annulus lies in the yz-plane, with its center at the origin. For an arbitrary point the x-axis (the axis of the annulus), find the magnitude and direction of the electric field
E
→
. Consider points both above and below the annulus. (c) Show that at points on the x-axis that are sufficiently close to the origin, the magnitude of the electric field is approximately proportional to the distance between the center of the annulus and the point. How close is “sufficiently close”? (d) A point particle with mass m and negative charge −q is free to move along the x-axis (but cannot move off the axis). The particle is originally placed at rest at x = 0.01 R1 and released. Find the frequency of oscillation of the particle. (Hint: Review Section 14.2. The annulus is held stationary.)
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
One has to push down a ball with a force of 470 Newtons in order to hold the ball still, completely submerged under the surface of the water. What is the volume of the styrofoam ball in cubic meters? Use 997 kg/m3 as the density of water, 95 kg/m3 for the density of the styrofoam, and g = 9.8 m/s2.
Chapter 21 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.