Chemistry: The Molecular Nature of Matter and Change
Chemistry: The Molecular Nature of Matter and Change
8th Edition
ISBN: 9781259631757
Author: Martin Silberberg Dr., Patricia Amateis Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 21.118P

(a)

Interpretation Introduction

Interpretation:

The number of days required to produce the given current by silver button battery has to be calculated.

Concept Introduction:

An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.

Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.

Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.

Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.

Oxidation: The gain of oxygen or the loss of hydrogen or the loss of an electron in a species during a redox reaction is called as oxidation.

Reduction: The loss of oxygen or the gain of hydrogen or the gain of an electron in a species during a redox reaction is called as reduction.

The Standard Gibb’s free energy change and the standard cell potential are related as followed:

Δ°G=-nFE°cell

n - Number of electrons involved per equivalent of the net redox reaction in the cell

F - Faraday’s Constant (96500 C)

E°cell - Standard cell potential.

The Nernst equation depicts the relationship between Ecell and Eocell as follows,

Ecell=Eocell0.0592VnlogQwhere,Ecell=cellpotentialEocell=Standardcellpotentialn=No.ofelectronsQ=ReactionQuotient

(a)

Expert Solution
Check Mark

Explanation of Solution

In order to know the number of electrons involved the reaction for silver button battery is determined first, which then the given zinc mass is converted into moles.

Zn(s)+2OH-(aq)ZnO(s)+H2O(l)+2e-Ag2O(s)+H2O(l)+2e-2Ag(s)+2OH-(aq)_Zn(s)+Ag2O(s)ZnO(s)+2Ag(s)Znmoles=0.75gZn(80%100%)(1molZn65.41gZn)=0.00917291mol

No.ofdays=0.00917291molZn2mole-1molZn(96485C1mole-)(AC/s)(1μA106A)(10.85μA)(1h3600s)(1day24h)=2.4×104days

(b)

Interpretation Introduction

Interpretation:

The silver grams used to make the given batter has to be calculated.

Concept Introduction:

An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.

Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.

Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.

Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.

Oxidation: The gain of oxygen or the loss of hydrogen or the loss of an electron in a species during a redox reaction is called as oxidation.

Reduction: The loss of oxygen or the gain of hydrogen or the gain of an electron in a species during a redox reaction is called as reduction.

The Standard Gibb’s free energy change and the standard cell potential are related as followed:

Δ°G=-nFE°cell

n - Number of electrons involved per equivalent of the net redox reaction in the cell

F - Faraday’s Constant (96500 C)

E°cell - Standard cell potential.

The Nernst equation depicts the relationship between Ecell and Eocell as follows,

Ecell=Eocell0.0592VnlogQwhere,Ecell=cellpotentialEocell=Standardcellpotentialn=No.ofelectronsQ=ReactionQuotient

(b)

Expert Solution
Check Mark

Explanation of Solution

In order to know the number of electrons involved the reaction for silver button battery is determined first, which then the given zinc mass is converted into moles.

Zn(s)+2OH-(aq)ZnO(s)+H2O(l)+2e-Ag2O(s)+H2O(l)+2e-2Ag(s)+2OH-(aq)_Zn(s)+Ag2O(s)ZnO(s)+2Ag(s)Znmoles=0.75gZn(80%100%)(1molZn65.41gZn)=0.00917291mol

Agmass=0.00917291molZn1molAg2O1molZn(100%95%)(2molAg1molAg2O)(107.9gAg1molAg)=2.1g

(c)

Interpretation Introduction

Interpretation:

The cost of silver consumed for each day has to be identified.

Concept Introduction:

An electrochemical cell is a device in which a redox reaction is used to convert chemical energy into electrical energy. Such device is also known as the galvanic or voltaic cell.

Galvanic cell consists of two half-cells. The redox reaction occurs in these half-cells. The half-cell in which the reduction reaction occurs is known as the reduction half-cell, whereas the half-cell in which the oxidation reaction occurs is known as the oxidation half-cell.

Anode: The electrode where the oxidation occurs is called as an anode. It is a negatively charged electrode.

Cathode: The electrode where reduction occurs is called as a cathode. It is a positively charged electrode.

Oxidation: The gain of oxygen or the loss of hydrogen or the loss of an electron in a species during a redox reaction is called as oxidation.

Reduction: The loss of oxygen or the gain of hydrogen or the gain of an electron in a species during a redox reaction is called as reduction.

The Standard Gibb’s free energy change and the standard cell potential are related as followed:

Δ°G=-nFE°cell

n - Number of electrons involved per equivalent of the net redox reaction in the cell

F - Faraday’s Constant (96500 C)

E°cell - Standard cell potential.

The Nernst equation depicts the relationship between Ecell and Eocell as follows,

Ecell=Eocell0.0592VnlogQwhere,Ecell=cellpotentialEocell=Standardcellpotentialn=No.ofelectronsQ=ReactionQuotient

(c)

Expert Solution
Check Mark

Explanation of Solution

In order to know the number of electrons involved the reaction for silver button battery is determined first, which then the given zinc mass is converted into moles.

Zn(s)+2OH-(aq)ZnO(s)+H2O(l)+2e-Ag2O(s)+H2O(l)+2e-2Ag(s)+2OH-(aq)_Zn(s)+Ag2O(s)ZnO(s)+2Ag(s)Znmoles=0.75gZn(80%100%)(1molZn65.41gZn)=0.00917291mol

Cost=2.1gAg(95%100%)(1troyoz31.10gAg)($231troyoz)12.410262×104days=$6.1×105/day

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.
Q5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OH
potential energy Br b) Translate the Newman projection below to its wedge-and-dash drawing. F H. OH CH3 CI c) Isopentane (2-methylbutane) is a compound containing a branched carbon chain. Draw a Newman projection of six conformations about the C2-C3 bond of isopentane. On the curve of potential energy versus angle of internal rotation for isopentane, label each energy maximum and minimum with one of the conformations. 0° 。 F A B D C angle of internal rotation E F 360° (=0°) JDownl

Chapter 21 Solutions

Chemistry: The Molecular Nature of Matter and Change

Ch. 21.4 - Prob. 21.6AFPCh. 21.4 - Prob. 21.6BFPCh. 21.4 - Prob. 21.7AFPCh. 21.4 - Prob. 21.7BFPCh. 21.4 - Prob. 21.8AFPCh. 21.4 - Prob. 21.8BFPCh. 21.7 - The most ionic and least ionic of the common...Ch. 21.7 - Prob. 21.9BFPCh. 21.7 - Prob. 21.10AFPCh. 21.7 - Prob. 21.10BFPCh. 21.7 - Prob. 21.11AFPCh. 21.7 - Prob. 21.11BFPCh. 21.7 - In the final steps of the ETC, iron and copper...Ch. 21.7 - Prob. B21.2PCh. 21 - Prob. 21.1PCh. 21 - Prob. 21.2PCh. 21 - Prob. 21.3PCh. 21 - Water is used to balance O atoms in the...Ch. 21 - Prob. 21.5PCh. 21 - Prob. 21.6PCh. 21 - Prob. 21.7PCh. 21 - Prob. 21.8PCh. 21 - Prob. 21.9PCh. 21 - Prob. 21.10PCh. 21 - Prob. 21.11PCh. 21 - Prob. 21.12PCh. 21 - Prob. 21.13PCh. 21 - Prob. 21.14PCh. 21 - Prob. 21.15PCh. 21 - Prob. 21.16PCh. 21 - Prob. 21.17PCh. 21 - Prob. 21.18PCh. 21 - Prob. 21.19PCh. 21 - Prob. 21.20PCh. 21 - Aqua regia, a mixture of concentrated HNO3 and...Ch. 21 - Consider the following general voltaic...Ch. 21 - Why does a voltaic cell not operate unless the two...Ch. 21 - Prob. 21.24PCh. 21 - Prob. 21.25PCh. 21 - Prob. 21.26PCh. 21 - Consider the following voltaic cell: In which...Ch. 21 - Consider the following voltaic cell: In which...Ch. 21 - Prob. 21.29PCh. 21 - Prob. 21.30PCh. 21 - A voltaic cell is constructed with an Fe/Fe2+...Ch. 21 - Prob. 21.32PCh. 21 - Prob. 21.33PCh. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - What does a negative indicate about a redox...Ch. 21 - Prob. 21.37PCh. 21 - In basic solution, Se2− and ions react...Ch. 21 - Prob. 21.39PCh. 21 - Prob. 21.40PCh. 21 - Use the emf series (Appendix D) to arrange each...Ch. 21 - Prob. 21.42PCh. 21 - Prob. 21.43PCh. 21 - Prob. 21.44PCh. 21 - Prob. 21.45PCh. 21 - Prob. 21.46PCh. 21 - Prob. 21.47PCh. 21 - Prob. 21.48PCh. 21 - Prob. 21.49PCh. 21 - Prob. 21.50PCh. 21 - Prob. 21.51PCh. 21 - Prob. 21.52PCh. 21 - Prob. 21.53PCh. 21 - Prob. 21.54PCh. 21 - Prob. 21.55PCh. 21 - Prob. 21.56PCh. 21 - Prob. 21.57PCh. 21 - Prob. 21.58PCh. 21 - Prob. 21.59PCh. 21 - Prob. 21.60PCh. 21 - Prob. 21.61PCh. 21 - Prob. 21.62PCh. 21 - Prob. 21.63PCh. 21 - Prob. 21.64PCh. 21 - Prob. 21.65PCh. 21 - Prob. 21.66PCh. 21 - Prob. 21.67PCh. 21 - Prob. 21.68PCh. 21 - Prob. 21.69PCh. 21 - Prob. 21.70PCh. 21 - Prob. 21.71PCh. 21 - Prob. 21.72PCh. 21 - Prob. 21.73PCh. 21 - Prob. 21.74PCh. 21 - Prob. 21.75PCh. 21 - Prob. 21.76PCh. 21 - Prob. 21.77PCh. 21 - Prob. 21.78PCh. 21 - Prob. 21.79PCh. 21 - Prob. 21.80PCh. 21 - Prob. 21.81PCh. 21 - Consider the following general electrolytic...Ch. 21 - Prob. 21.83PCh. 21 - Prob. 21.84PCh. 21 - Prob. 21.85PCh. 21 - Prob. 21.86PCh. 21 - In the electrolysis of molten NaBr: What product...Ch. 21 - Prob. 21.88PCh. 21 - Prob. 21.89PCh. 21 - Prob. 21.90PCh. 21 - Prob. 21.91PCh. 21 - Prob. 21.92PCh. 21 - Prob. 21.93PCh. 21 - Prob. 21.94PCh. 21 - Prob. 21.95PCh. 21 - Prob. 21.96PCh. 21 - Prob. 21.97PCh. 21 - Write a balanced half-reaction for the product...Ch. 21 - Prob. 21.99PCh. 21 - Prob. 21.100PCh. 21 - Prob. 21.101PCh. 21 - Prob. 21.102PCh. 21 - Prob. 21.103PCh. 21 - Prob. 21.104PCh. 21 - Prob. 21.105PCh. 21 - Prob. 21.106PCh. 21 - Prob. 21.107PCh. 21 - Prob. 21.108PCh. 21 - Prob. 21.109PCh. 21 - Prob. 21.110PCh. 21 - Prob. 21.111PCh. 21 - Prob. 21.112PCh. 21 - Prob. 21.113PCh. 21 - Prob. 21.114PCh. 21 - Prob. 21.115PCh. 21 - Prob. 21.116PCh. 21 - Prob. 21.117PCh. 21 - Prob. 21.118PCh. 21 - Prob. 21.119PCh. 21 - Prob. 21.120PCh. 21 - To examine the effect of ion removal on cell...Ch. 21 - Prob. 21.122PCh. 21 - Prob. 21.123PCh. 21 - Prob. 21.124PCh. 21 - Prob. 21.125PCh. 21 - Prob. 21.126PCh. 21 - Commercial electrolytic cells for producing...Ch. 21 - Prob. 21.129PCh. 21 - Prob. 21.130PCh. 21 - The following reactions are used in...Ch. 21 - Prob. 21.132PCh. 21 - Prob. 21.133PCh. 21 - Prob. 21.134PCh. 21 - Prob. 21.135PCh. 21 - If the Ecell of the following cell is 0.915 V,...Ch. 21 - Prob. 21.137PCh. 21 - Prob. 21.138PCh. 21 - Prob. 21.139PCh. 21 - Prob. 21.140PCh. 21 - Prob. 21.141PCh. 21 - Prob. 21.142PCh. 21 - Prob. 21.143PCh. 21 - Prob. 21.144PCh. 21 - Prob. 21.145PCh. 21 - Prob. 21.146PCh. 21 - Prob. 21.147PCh. 21 - Both Ti and V are reactive enough to displace H2...Ch. 21 - For the reaction ∆G° = 87.8 kJ/mol Identity the...Ch. 21 - Two voltaic cells are to be joined so that one...Ch. 21 - Prob. 21.152PCh. 21 - Prob. 21.153P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY