Concept explainers
Interpretation:
The three steps in glycogen degradation and the enzymes needed for the same should be determined.
Concept introduction:
The storage form of glucose is glycogen, a
Answer to Problem 1P
The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen catalyzed by glycogen phosphorylase (ii) glycogen remodeling by enzymes transferase and a 1,6 glycosidase and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate with the help of enzyme phosphoglucomutase.
Explanation of Solution
The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen (ii) glycogen remodeling and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate.
The glucose-6-phosphate can enter the glycolytic pathway or can be transformed into glucose to be released in plasma of blood or enter pentose phosphate pathway. For the synthesis of glycogen from glucose, the monomers of glucose are required to be activated as UDP glucose or uridine diphosphate glucose.
In the first step of glycogen breakdown, phosphorolysis catalyzed by glycogen phosphorylase cleaves an a 1,4 glycosidic bond between a terminal glucose containing a free hydroxyl group on the fourth carbon and its adjacent glucose molecule using orthophosphate. The enzyme glycogen phosphorylase cannot cleave the a 1,6 glycosidic bond that form the branching points.
During the second stage, enzymes transferase and a 1,6 glycosidase helps in modification of glycogen for glycogen phosphorylase to continue the degradation process. A group of three glucose molecules are removed and transferred to another branch of glycogen. The remaining glucose molecule is removed by cleaving the a 1,6 glycosidic bond by the enzyme a 1,6 glycosidase.
In the final stage, conversion of glucose-1-phosphate to glucose-6-phosphate takes place with the help of an enzyme known as phosphoglucomutase.
The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen catalyzed by glycogen phosphorylase (ii) glycogen remodeling by enzymes transferase and a 1,6 glycosidase and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate with the help of enzyme phosphoglucomutase.
Want to see more full solutions like this?
Chapter 21 Solutions
BIOCHEMISTRY 2 TERM ACCESS
- 7. What is the major organic product obtained from the following reaction sequence? Ph A OH 99 Ph OH D Br HOCH2CH2OH H2SO4 1. Mg, Et₂O 2. PhCH2CHO HCI, H₂O Br OH Ph Ph OH B C Br OH Ph Earrow_forwardPls helparrow_forwardH₂N NH peptide_0e60 A dipeptide is made up of two (2) amino acids. The figure above shows one such dipeptide with an unknown sequence. Your task is to find out the two (2) letter sequence of this dipeptide.arrow_forward
- carbons in each of the structures below. For instance, the central carbon of chloromethylbutane (pictured 3. A chiral carbon is a carbon that is single-bonded to four different types of groups. Identify the chiral above) is a chiral carbon. (Can you see how the groups attached to it are all chemically different?) In each of the chiral molecules below, identify all the carbons that are chiral carbons by drawing a circle around each one of them. (a) the carbohydrate glucose H O (b) the carbohydrate fructose CH₂OH 1C H-C-OH 3 HO-C-H 4 H-C-OH 5 H-C-OH 6CH₂OH D-Glucose (linear form) (c) the amino acid leucine O O H3C. HO H H- -OH CH 3 NH2 H- -OH CH₂OH OHarrow_forwardWe always include controls in the Annexin-V-GFP/Propidium Iodide flow cytometric assay to study apoptosis. List four types of controls in this assay. Why do we need these controls? Explain your answers. After the flow assay, if we like to examine the morphology of the viable, early apoptotic and late apoptotic cells by confocal microscopy, what can we do and what are the expected results?arrow_forward3. (2 points) Your lab partner accidentally used a pen instead of a pencil to mark the baseline and label the lanes of their TLC plate. Briefly (1-2 sentences for each point) describe (a) what would happen to the ink when you develop the TLC plate; and (b) how this would affect the experiment. 1arrow_forward
- Do schwann cells produce or act as myelin in the peripheral nervous system? I know that they encase and wrap around axons, but where does the myelin come into play?arrow_forwardThe enzyme lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactatein skeletal muscle cells using NAD/NADH during anaerobic “balanced” fermentation.Answer the following questions about this reaction. (a) Write out the two reductive half reactions and indicate the E ̊' for each half reaction. Write out the full balanced reaction for the pyruvate to lactate rxn and indicate the ∆E ̊' for the reaction. (b) What is the free energy change under standard state conditions for thisreaction? Which direction is spontaneous?(c) Assume that in skeletal muscle cells the ratio of [NAD+] to [NADH] is 100, and that the[pyruvate] = 0.40 mM and [lactate] = 4.0 mM. What is the free energy change (∆G')for the conversion of pyruvate to lactate? Indicate the direction in which the reactionis spontaneous under these cellular conditions.arrow_forwardWhy did the authors worry about the temperature-dependent solubility of the carriers in thebilayer? How did the authors determine whether the effect of freezing the lipid bilayer wasto decrease the solubility of the carriers (nonactin and valinomycin) or whether the effectwas to impair their ability to diffuse through the membrane (decrease their mobility)?arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningAnatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax College