
Concept explainers
(a)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(a)

Answer to Problem 14PS
The complete balanced equation for the reaction of potassium and iodine is:
Explanation of Solution
Potassium belongs to group
This electron is gained by iodine to form an anion with one negative charge. Iodine belongs to halogen family and it has the oxidation number of
The number of electrons in both the equations is same. Thus an ionic compound is formed in which potassium has
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation Since iodine is present as
Thus, the overall balanced equation is:
(b)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(b)

Answer to Problem 14PS
The complete balanced equation for the reaction of barium and oxygen is:
Explanation of Solution
Barium belongs to group
These two electrons are gained by the oxygen leading to the formation of an ionic compound. Oxygen belongs to the sulfur family and exists in -2 oxidation number.
The number of electrons in both the equations is same. Barium has a charge of
The stoichiometric coefficients are multiplied with species to have an equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since oxygen is present as
Thus, the overall balanced equation is:
(c)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(c)

Answer to Problem 14PS
The complete balanced equation for the reaction of aluminium with sulfur is:
Explanation of Solution
Aluminium belongs to group
Sulphur belongs to oxygen family and exists in -2 oxidation number. These two electrons are gained by the sulphur leading to the formation of a product compound.
The numbers of electrons are not same in both the equations. Aluminium bear charge and sulfur bears
The
Thus, the overall balanced equation is:
(d)
Interpretation: The complete balanced equation has to be written for the given reaction.
Concept introduction: Main group elements are categorized as s-block and p-block elements. The s-block elements include metals belonging to group
Ionic compounds are formed by the loss of electrons from the metal which is gained by the nonmetals. The metal gets positively charge and the non-metal attains a negative charge thus forming cations and anions respectively. They do so to attain a noble gas configuration or to attain stability.
Here, by losing electrons metal M achieve the noble gas configuration. These electrons are gained by the non-metals X as shown below.
The metals of group
The compounds of non-metals with oxides and hydrides are covalent compounds. This is because non-metals are less electropositive and the difference in electronegativity between two elements is less than
(d)

Answer to Problem 14PS
The complete balanced equation for the reaction of silicon with chlorine is:
Explanation of Solution
Silicon belongs to group
The electronegativity difference between silicon and chlorine is less than
The stoichiometric coefficients are multiplied with species to have equal number of atoms on both the reactant and product side, for a balanced chemical equation. Since chlorine is present as
Thus, the overall balanced equation is:
Want to see more full solutions like this?
Chapter 21 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- H CH3 CH3 b) Write the products of your compound and the following reagents. If the reaction would not work for your compound, write "no reaction" and explain the problem. NaCN H* H₂NNHCH5 H* -à NaBH -à CH2MgBr Cro₁₂ --à H3O+ -à c) Would your compound give a positive Tollen's test? Why or why not?arrow_forwardHomework 4 Chem 204 Dr. Hellwig Consider this compound, which will be referred to as "your compound". a) Name your compound according to the IUPAC system. Include stereochemistry (E/Z/R/S) H CH3 CH3arrow_forwardWhat is the mechanism for this?arrow_forward
- 21.50 Determine the combinations of haloalkane(s) and alkoxide(s) that could be used to synthesize the following ethers through Williamson ether synthesis. (a) (c) (d) (e) (f) H₂COarrow_forward1. Arrange the following in order of increasing bond energy (lowest bond energy first, highest bond energy last). Provide your rationale. C=C, C-F, C=C, C-N, C-C List the bond order for each example.arrow_forwardWhat is the major enolate formed when treated with LDA? And why that one?arrow_forward
- 4. Calculate the total number of sigma bonds and total number of pi bonds in each of the following compounds. a. HH :D: +1 I H-N-C-C-O-H I H b. HH H Н :N=C-C-C=C-CEC-H :0: total o H-C-H H-C = `C-H I H. 11 H-C = C= CH H total o total π total π 1 Harrow_forwardIn the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJarrow_forwardIndicate the processes in the dismutation of Cu2O.arrow_forward
- 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…arrow_forwarddraw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax


