Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337671729
Author: SERWAY
Publisher: Cengage
bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 13P

You are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0°C (surface-water temperature) and 5.00°C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy absorbed from sunlight on the surface. If the average intensity absorbed from sunlight is 650 W/m2 for 12 daylight hours on a clear day, you need to find the area of the ocean surface that is necessary for sunlight to replace the energy absorbed into the engine. (e) From this information, you need to determine if there is enough ocean surface on the Earth to use such engines to supply the electrical needs for all the homes associated with the Earth’s population. Assume the energy use for a home in part (c) is an average over the entire planet. (f) In view of your results in this problem, your supervisor has asked for your conclusion as to whether such a system is worthwhile to pursue. Note that the “fuel” (sunlight) is free.

Blurred answer
Students have asked these similar questions
You are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0°C (surfacewater temperature) and 5.00°C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy…
Iceland has both high geothermal activity, with high temperatures near the surface, and abundant cold surface water. Iceland has many power plants that take advantage of the proximity of these natural hot and cold reservoirs. One plant uses an underground source at 122°C as the hot reservoir and a nearby lake at 5°C as the cold reservoir. The plant draws 16 MW from the hot reservoir to produce 1.8 MW of electricity. How does the actual efficiency of the plant compare to the theoretical maximum efficiency?
The surface waters of tropical oceans are at a temperature of 27°C while water at a depth of 1200 m is at 3°C. It has been suggested these warm and cold waters could be the energy reservoirs for a heat engine, allowing us to do work or generate electricity from the thermal energy of the ocean. What is the maximum efficiency possible of such a heat engine?

Chapter 21 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 21 - A freezer has a coefficient of performance of...Ch. 21 - Prob. 6PCh. 21 - One of the most efficient heat engines ever built...Ch. 21 - Prob. 8PCh. 21 - If a 35.0% -efficient Carnot heat engine (Fig....Ch. 21 - Prob. 10PCh. 21 - Prob. 11PCh. 21 - A power plant operates at a 32.0% efficiency...Ch. 21 - You are working on a summer job at a company that...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - Suppose you build a two-engine device with the...Ch. 21 - A heat pump used for heating shown in Figure...Ch. 21 - Prob. 18PCh. 21 - An idealized diesel engine operates in a cycle...Ch. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 21 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 21 - A 2.00-L container has a center partition that...Ch. 21 - Calculate the change in entropy of 250 g of water...Ch. 21 - What change in entropy occurs when a 27.9-g ice...Ch. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - Prob. 30APCh. 21 - Prob. 31APCh. 21 - In 1993, the U.S. government instituted a...Ch. 21 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 21 - Prob. 34APCh. 21 - Prob. 35APCh. 21 - Prob. 36APCh. 21 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 21 - Prob. 38APCh. 21 - A heat engine operates between two reservoirs at...Ch. 21 - You are working as an assistant to a physics...Ch. 21 - Prob. 41APCh. 21 - You are working as an expert witness for an...Ch. 21 - Prob. 43APCh. 21 - Prob. 44APCh. 21 - A sample of an ideal gas expands isothermally,...Ch. 21 - Prob. 46APCh. 21 - The compression ratio of an Otto cycle as shown in...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY