Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 136RQ

(a)

To determine

The rate of heat transfer by natural convection.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The diameter of first sphere (D1) is 15cm.

The diameter of second sphere (D2) is 25cm.

The surface temperature of first sphere (T1) is 350K.

The surface temperature of second sphere (T2) is 275K.

Calculation:

Calculate the film temperature.

    Tf=Ts+T2=350K+275K2=(312.5K273)°C=39.5°C

Refer Table A-22, “Properties of air at 1atm pressure”.

Obtain the following properties of air corresponding to 39.5°C as follows.

k=0.02658W/mKv=1.697×105m2/sβ=0.0032K1Pr=0.7256

Calculate the characteristic length.

    Lc=D0Di2=(25cm102m1cm)(15cm102m1cm)2=0.05m

Calculate the Rayleigh number.

    Ra=gβ(T1T2)Lc3v2Pr=(9.81m/s2)(0.0032K1)(350K275K)(0.05m)3(1.697×105m2/s)20.7256=7.415×105

Calculate the view function.

    Fsph=Lc(DiD0)4(Di7/5+D07/5)5=0.05m(15cm102m1cm×25cm102m1cm)4((15cm102m1cm)7/5+(25cm102m1cm)7/5)5=0.005900

Calculate the thermal conductivity.

    keff=0.74k(Pr0.861+Pr)1/4(FsphRa)1/4=0.74(0.02658W/mK)(0.72560.861+0.7256)1/4(0.005900×7.415×105)1/4=0.1315W/mK

Calculate rate of heat transfer by natural convection.

    Q˙=keffπ(DiD0Lc)(TiT0)=(0.1315W/mK)π((15cm102m1cm)×(25cm102m1cm)0.05m)(350K275K)=23.2W

Thus, rate of heat transfer by natural convection is 23.2W.

(b)

To determine

The rate of heat transfer by radiation.

(b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Calculate the rate of heat transfer by radiation.

    Q˙12=(πD12)σ(T24T14)1ε1+1ε2ε1(D1D2)2=(π(15cm102m1cm)2)(5.67×108W/m2K4)[(350K)4(275K)4]10.75+10.750.75(15cm25cm)2=25.6W

Thus, the rate of heat transfer by radiation is 25.6W.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Student Name: Student Id: College of Applied Engineering Al-Muzahmiyah Branch Statics (AGE 1330) Section-1483 Quiz-2 Time: 20 minutes Date: 16/02/2025 Q.1. A swinging door that weighs w=400.0N is supported by hinges A and B so that the door can swing about a vertical' axis passing through the hinges (as shown in below figure). The door has a width of b=1.00m and the door slab has a uniform mass density. The hinges are placed symmetrically at the door's edge in such a way that the door's weight is evenly distributed between them. The hinges are separated by distance a=2.00m. Find the forces on the hinges when the door rests half-open. Draw Free body diagram also. [5 marks] [CLO 1.2] Mool b ర a 2.0 m B 1.0 m
For the walking-beam mechanism shown in Figure 3, find and plot the x and y coordinates of the position of the coupler point P for one complete revolution of the crank O2A. Use the coordinate system shown in Figure 3. Hint: Calculate them first with respect to the ground link 0204 and then transform them into the global XY coordinate system. y -1.75 Ꮎ Ꮎ 4 = 2.33 0242.22 L4 x AP = 3.06 L2 = 1.0 W2 31° B 03 L3 = 2.06 P 1 8 5 .06 6 7 P'
The link lengths, gear ratio (2), phase angle (Ø), and the value of 02 for some geared five bar linkages are defined in Table 2. The linkage configuration and terminology are shown in Figure 2. For the rows assigned, find all possible solutions for angles 03 and 04 by the vector loop method. Show your work in details: vector loop, vector equations, solution procedure. Table 2 Row Link 1 Link 2 Link 3 Link 4 Link 5 λ Φ Ө a 6 1 7 9 4 2 30° 60° P y 4 YA B b R4 R3 YA A Gear ratio: a 02 d 05 r5 R5 R2 Phase angle: = 0₂-202 R1 05 02 r2 Figure 2. 04 X

Chapter 21 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 21 - A radio station is broadcasting radio waves at a...Ch. 21 - Prob. 12PCh. 21 - Prob. 13PCh. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - Define the total and spectral blackbody emissive...Ch. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - A small body is placed inside of a spherical...Ch. 21 - Prob. 23PCh. 21 - A thin vertical copper plate is subjected to a...Ch. 21 - Prob. 25PCh. 21 - Prob. 26PCh. 21 - The temperature of the filament of an incandescent...Ch. 21 - The temperature of the filament of an incandescent...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Define the properties emissivity and absorptivity....Ch. 21 - Define the properties reflectivity and...Ch. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - A furnace that has a 40-cm × 40-cm glass window...Ch. 21 - Prob. 40PCh. 21 - The emissivity of a tungsten filament can be...Ch. 21 - Prob. 42PCh. 21 - Prob. 43PCh. 21 - Prob. 44PCh. 21 - Prob. 45PCh. 21 - Prob. 46PCh. 21 - An opaque horizontal plate is well insulated on...Ch. 21 - Prob. 48PCh. 21 - Prob. 49PCh. 21 - Prob. 50PCh. 21 - What does the view factor represent? When is the...Ch. 21 - How can you determine the view factor F12 when the...Ch. 21 - What are the summation rule and the superposition...Ch. 21 - Prob. 54PCh. 21 - Consider two coaxial parallel circular disks of...Ch. 21 - Consider two coaxial parallel circular disks of...Ch. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - Prob. 60PCh. 21 - Determine the four view factors associated with an...Ch. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - Prob. 66PCh. 21 - Determine the view factors F13 and F23 between the...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Two infinitely long parallel plates of width w are...Ch. 21 - Prob. 71PCh. 21 - Prob. 72PCh. 21 - Prob. 73PCh. 21 - Why is the radiation analysis of enclosures that...Ch. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77PCh. 21 - What are the two methods used in radiation...Ch. 21 - Prob. 79PCh. 21 - Prob. 80PCh. 21 - Prob. 82PCh. 21 - Two black parallel rectangles with dimensions 3 ft...Ch. 21 - Prob. 84PCh. 21 - Prob. 85PCh. 21 - Prob. 86PCh. 21 - Prob. 87PCh. 21 - Prob. 88PCh. 21 - Consider a hemispherical furnace of diameter D = 5...Ch. 21 - A dryer is shaped like a long semicylindrical duct...Ch. 21 - Prob. 91PCh. 21 - Prob. 92PCh. 21 - Prob. 93PCh. 21 - Prob. 94PCh. 21 - Prob. 95PCh. 21 - Prob. 96PCh. 21 - Prob. 97PCh. 21 - Prob. 99PCh. 21 - Prob. 100PCh. 21 - Prob. 101PCh. 21 - Reconsider Prob. 21–101. Using an appropriate...Ch. 21 - Air is flowing between two infinitely large...Ch. 21 - Prob. 104PCh. 21 - Prob. 105PCh. 21 - Prob. 106PCh. 21 - Prob. 107PCh. 21 - Prob. 108PCh. 21 - Prob. 109PCh. 21 - Prob. 111PCh. 21 - Prob. 112PCh. 21 - Prob. 113PCh. 21 - Prob. 114PCh. 21 - A 1-m-diameter spherical cavity is maintained at a...Ch. 21 - Prob. 117RQCh. 21 - Prob. 118RQCh. 21 - Prob. 119RQCh. 21 - Prob. 120RQCh. 21 - Prob. 121RQCh. 21 - Prob. 122RQCh. 21 - Prob. 123RQCh. 21 - Prob. 124RQCh. 21 - Prob. 125RQCh. 21 - Consider an enclosure consisting of eight...Ch. 21 - Consider a cylindrical enclosure with A1, A2, and...Ch. 21 - Two parallel back disks are positioned coaxially...Ch. 21 - Two parallel concentric disks, 20 cm and 40 cm in...Ch. 21 - A dryer is shaped like a long semicylindrical duct...Ch. 21 - Prob. 131RQCh. 21 - Prob. 132RQCh. 21 - Prob. 133RQCh. 21 - Prob. 134RQCh. 21 - A 2-m-internal-diameter double-walled spherical...Ch. 21 - Prob. 136RQCh. 21 - Prob. 137RQCh. 21 - Prob. 138RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license