
Starting Out with C++ from Control Structures to Objects (8th Edition)
8th Edition
ISBN: 9780133769395
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 7PC
Program Plan Intro
Queue Converter
Program Plan:
DynIntQueue.h:
- Include required header files.
- Declare a class named “DynIntQueue”; inside the class,
- Inside the “private” access specifier,
- Create a structure named “QueueNode”.
- Declare a variable “value”.
- Create a pointer named “next”.
- Create two pointers named “front” and “rear”.
- Declare a variable “numItems”.
- Create a structure named “QueueNode”.
- Inside “public” access specifier,
- Declare constructor and destructor.
- Declare the functions “enqueue()”, “dequeue()”, “isEmpty()”, “isFull()”, and “clear()”.
- Inside the “private” access specifier,
DynIntQueue.cpp:
- Include required header files.
- Give definition for the constructor.
- Assign the values.
- Give definition for the destructor.
- Call the function “clear()”.
- Give function definition for “enqueue()”.
- Make the pointer “newNode” as null.
- Assign “num” to “newNode->value”.
- Make “newNode->next” as null.
- Check whether the queue is empty using “isEmpty()” function.
- If the condition is true then, assign “newNode” to “front” and “rear”.
- If the condition is not true then,
- Assign “newNode” to “rear->next”.
- Assign “newNode” to “rear”.
- Increment the variable “numItems”.
- Give function definition for “dequeue()”.
- Assign “temp” pointer as null.
- Check if the queue is empty using “isEmpty()” function.
- If the condition is true then print “The queue is empty”.
- If the condition is not true then,
- Assign the value of front to the variable “num”.
- Make “front->next” as “temp”.
- Delete the front value.
- Make temp as front.
- Decrement the variable “numItems”.
- Give function definition for “isEmpty()”.
- Assign “true” to a Boolean variable
- Check if “numItems” is true.
- If the condition is true then assign “false” to the variable.
- Return the Boolean variable.
- Give function definition for “clear()”.
- Declare a variable.
- Dequeue values from queue till the queue becomes empty using “while” condition.
- Declare a variable.
IntBinaryTree.h:
- Include required header files.
- Declare a class named “IntBinaryTree”. Inside the class,
- Inside the “private” access specifier,
- Give the structure declaration for the creation of node.
- Declare a variable
- Create two pointers named “left” and “right” to access the value left and right nodes respectively.
- Create a pointer named “root” to access the value of root node.
- Give function declaration for “insert ()”, “destroy_SubTree ()”, “delete_Node ()”, “make_Deletion ()”, “display_InOrder ()”, “display_PreOrder ()”, “display_PostOrder ()”, “copyTree ()”, and “setQueue ()”.
- Give the structure declaration for the creation of node.
- Inside “public” access specifier,
- Give the definition for constructor and destructor.
- Give function declaration for binary tree operations.
- Inside the “private” access specifier,
IntBinaryTree.cpp:
- Include required header files.
- Give definition for copy constructor.
- Give function definition for “insert()”.
- Check if “nodePtr” is null.
- If the condition is true then, insert node.
- Check if value of new node is less than the value of node pointer
- If the condition is true then, Insert node to the left branch by calling the function “insert()” recursively.
- Else,
- Insert node to the right branch by calling the function “insert()” recursively.
- Check if “nodePtr” is null.
- Give function definition for “insert_Node ()”.
- Create a pointer for new node.
- Assign the value to the new node.
- Make left and right node as null.
- Call the function “insert()” by passing parameters “root” and “newNode”.
- Give function definition for “destroy_SubTree()”.
- Check if the node pointer points to left node
- Call the function recursively to delete the left sub tree.
- Check if the node pointer points to the right node
- Call the function recursively to delete the right sub tree.
- Delete the node pointer.
- Check if the node pointer points to left node
- Give function definition for “search_Node()”.
- Assign false to the Boolean variable “status”.
- Assign root pointer to the “nodePtr”.
- Do until “nodePtr” exists.
- Check if the value of node pointer is equal to “num”.
- Assign true to the Boolean variable “status”
- Check if the number is less than the value of node pointer.
- Assign left node pointer to the node pointer.
- Else,
- Assign right node pointer to the node pointer.
- Check if the value of node pointer is equal to “num”.
- Return the Boolean variable.
- Give function definition for “remove()”.
- Call the function “delete_Node()”
- Give function definition for “delete_Node()”
- Check if the number is less than the node pointer value.
- Call the function “delete_Node()” recursively.
- Check if the number is greater than the node pointer value.
- Call the function “delete_Node()” recursively.
- Else,
- Call the function “make_Deletion()”.
- Check if the number is less than the node pointer value.
- Give function definition for “make_Deletion()”
- Create pointer named “tempPtr”.
- Check if the “nodePtr” is null.
- If the condition is true then, print “Cannot delete empty node.”
- Check if right node pointer is null.
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the left node child.
- Delete temporary pointer.
- If the condition is true then,
- Check is left node pointer is null
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the right node child.
- Delete temporary pointer.
- If the condition is true then,
- Else,
- Move right node to temporary pointer
- Reach to the end of left-Node using “while” condition.
- Assign left node pointer to temporary pointer.
- Reattach left node sub tree.
- Make node pointer as the temporary pointer.
- Reattach right node sub tree
- Delete temporary pointer.
- Give function definition for “display_InOrder()”.
- Check if the node pointer exists.
- Call the function “display_InOrder()” recursively.
- Print the value
- Call the function “display_InOrder()” recursively.
- Check if the node pointer exists.
- Give function definition for “display_PreOrder()”.
- Print the value.
- Call the function “display_PreOrder()” recursively.
- Call the function “display_PreOrder()” recursively.
- Give function definition for “display_PostOrder()”.
- Call the function “display_PostOrder()” recursively.
- Call the function “display_PostOrder()” recursively.
- Print value.
- Give function definition for assignment operator.
- Call the function “destroy_SubTree()”
- Call the copy constructor.
- Return the pointer.
- Copy tree function is called by copy constructor and assignment operator function
- Create a pointer named “newNode”.
- Check if “nPtr” is not equal to null
- Allocate memory dynamically.
- Assign pointer value to the new node.
- Call the function “copyTree()” by passing “nPtr” of left.
- Call the function “copyTree()” by passing “nPtr” of right
- Return the new node.
- Function definition for “setQueue()”.
- Check if the pointer “nodePtr” exists.
- Call the function “setQueue()” recursively by passing the left node.
- Call the function “setQueue()” recursively by passing the right node.
- Call the function “enqueue()” recursively by passing the left node.
Main.cpp:
- Include required header files.
- Inside “main()” function,
- Declare a variable “value” and assign it to 0.
- Create an object “intBT” for “IntBinaryTree” class.
- Insert 5 values using “insert_Node()” function.
- Display all the values by using the function “display_InOrder()”.
- Create an object “iqueue” for “DynIntQueue” class.
- Load the address to the pointer “qPtr”.
- Pass this pointer to the function “treeToQueue ()”.
- Do until the queue is not empty.
- Declare a variable.
- Call the function “dequeue()”.
- Display the value.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Information Security Risk and Vulnerability Assessment
1- Which TCP/IP protocol is used to convert the IP address to the Mac address? Explain 2-What popular switch feature allows you to create communication boundaries between systems connected to the switch3- what types of vulnerability directly related to the programmer of the software?4- Who ensures the entity implements appropriate security controls to protect an asset?
Please do not use AI and add refrence
Find the voltage V0 across the 4K resistor using the mesh method or nodal analysis. Note: I have already simulated it and the value it should give is -1.714V
Resolver por superposicion
Chapter 20 Solutions
Starting Out with C++ from Control Structures to Objects (8th Edition)
Ch. 20.1 - Prob. 21.1CPCh. 20.1 - Prob. 21.2CPCh. 20.1 - Prob. 21.3CPCh. 20.1 - Prob. 21.4CPCh. 20.1 - Prob. 21.5CPCh. 20.1 - Prob. 21.6CPCh. 20.2 - Prob. 21.7CPCh. 20.2 - Prob. 21.8CPCh. 20.2 - Prob. 21.9CPCh. 20.2 - Prob. 21.10CP
Ch. 20.2 - Prob. 21.11CPCh. 20.2 - Prob. 21.12CPCh. 20 - Prob. 1RQECh. 20 - Prob. 2RQECh. 20 - Prob. 3RQECh. 20 - Prob. 4RQECh. 20 - Prob. 5RQECh. 20 - Prob. 6RQECh. 20 - Prob. 7RQECh. 20 - Prob. 8RQECh. 20 - Prob. 9RQECh. 20 - Prob. 10RQECh. 20 - Prob. 11RQECh. 20 - Prob. 12RQECh. 20 - Prob. 13RQECh. 20 - Prob. 14RQECh. 20 - Prob. 15RQECh. 20 - Prob. 16RQECh. 20 - Prob. 17RQECh. 20 - Prob. 18RQECh. 20 - Prob. 19RQECh. 20 - Prob. 20RQECh. 20 - Prob. 21RQECh. 20 - Prob. 22RQECh. 20 - Prob. 23RQECh. 20 - Prob. 24RQECh. 20 - Prob. 25RQECh. 20 - Prob. 1PCCh. 20 - Prob. 2PCCh. 20 - Prob. 3PCCh. 20 - Prob. 4PCCh. 20 - Prob. 5PCCh. 20 - Prob. 6PCCh. 20 - Prob. 7PCCh. 20 - Prob. 8PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Describe three (3) Multiplexing techniques common for fiber optic linksarrow_forwardCould you help me to know features of the following concepts: - commercial CA - memory integrity - WMI filterarrow_forwardBriefly describe the issues involved in using ATM technology in Local Area Networksarrow_forward
- For this question you will perform two levels of quicksort on an array containing these numbers: 59 41 61 73 43 57 50 13 96 88 42 77 27 95 32 89 In the first blank, enter the array contents after the top level partition. In the second blank, enter the array contents after one more partition of the left-hand subarray resulting from the first partition. In the third blank, enter the array contents after one more partition of the right-hand subarray resulting from the first partition. Print the numbers with a single space between them. Use the algorithm we covered in class, in which the first element of the subarray is the partition value. Question 1 options: Blank # 1 Blank # 2 Blank # 3arrow_forward1. Transform the E-R diagram into a set of relations. Country_of Agent ID Agent H Holds Is_Reponsible_for Consignment Number $ Value May Contain Consignment Transports Container Destination Ф R Goes Off Container Number Size Vessel Voyage Registry Vessel ID Voyage_ID Tonnagearrow_forwardI want to solve 13.2 using matlab please helparrow_forward
- a) Show a possible trace of the OSPF algorithm for computing the routing table in Router 2 forthis network.b) Show the messages used by RIP to compute routing tables.arrow_forwardusing r language to answer question 4 Question 4: Obtain a 95% standard normal bootstrap confidence interval, a 95% basic bootstrap confidence interval, and a percentile confidence interval for the ρb12 in Question 3.arrow_forwardusing r language to answer question 4. Question 4: Obtain a 95% standard normal bootstrap confidence interval, a 95% basic bootstrap confidence interval, and a percentile confidence interval for the ρb12 in Question 3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT