Concept explainers
(a)
Find the mass of the ice that melts.
(a)
Answer to Problem 76AP
The mass of the ice that melts is
Explanation of Solution
Write the equation for kinetic energy,
Here,
Write the appropriate energy equation for isolated copper ice system.
Here,
Conclusion:
Substitute
Therefore, the mass of the ice that melts is
(b)
Find the energy input, change in internal energy and change in the mechanical energy of the block-ice system.
(b)
Answer to Problem 76AP
The general continuity equation for energy is,
The energy input, change in internal energy and change in the mechanical energy of the block-ice system are
Explanation of Solution
For the block as a system
Conclusion:
For the block-ice system.
Therefore, the energy input, change in internal energy and change in the mechanical energy of the block-ice system are
(c)
Find the energy input and change in internal energy for the ice system.
(c)
Answer to Problem 76AP
The energy input and change in internal energy for the ice system are
Explanation of Solution
For the ice as a system
Conclusion:
For the ice system.
Therefore, the energy input and change in internal energy for the ice system are
(d)
Find the mass of the ice that melts.
(d)
Answer to Problem 76AP
The mass of the ice that melts is
Explanation of Solution
This is same as solved in part a, use the equations in part a.
Conclusion:
Substitute
Therefore, the mass of the ice that melts is
(e)
Find the energy input, change in internal energy for the ice system and change in mechanical energy for the block-ice system.
(e)
Answer to Problem 76AP
The energy input, change in internal energy for the ice system and change in mechanical energy for the block-ice system are
Explanation of Solution
For the ice as a system
Conclusion:
For the ice system.
For block-ice system
Therefore, the energy input, change in internal energy for the ice system and change in mechanical energy for the block-ice system are
(f)
Find the energy input and change in internal energy for the metal-sheet system.
(f)
Answer to Problem 76AP
The energy input and change in internal energy for the metal-sheet system are
Explanation of Solution
For the ice as a system
Conclusion:
For the metal sheet system,
Therefore, the energy input and change in internal energy for the metal-sheet system are
(g)
Find the change in the temperature.
(g)
Answer to Problem 76AP
The change in the temperature is
Explanation of Solution
Write the appropriate energy equation for copper-copper system.
As the system have symmetry, each of the copper slab possesses half of the internal energy change of the system.
Then, the internal energy change of the copper slab is,
Conclusion:
Substitute
Therefore, the change in the temperature is
(h)
Find the energy input, change in internal energy for the sliding slab and change in mechanical energy for the two-slab system.
(h)
Answer to Problem 76AP
The energy input, change in internal energy for the sliding slab and change in mechanical energy for the two-slab system are
Explanation of Solution
For the sliding slab
Conclusion:
For two-slab system
Therefore, the energy input, change in internal energy for the sliding slab and change in mechanical energy for the two-slab system are
(i)
Find the energy input and change in internal energy for the stationary slab.
(i)
Answer to Problem 76AP
The energy input and change in internal energy for the stationary slab are
Explanation of Solution
For the stationary slab
Conclusion:
For stationary slab
Therefore, the energy input, change in internal energy for the sliding slab and change in mechanical energy for the two-slab system are
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning