Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 4CQ
To determine
The reason why a person can remove a piece of dry aluminum foil from hot oven with bare fingers by if moisture is present in the foil it results in burn.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The heat capacity of air at room temperature and pressure is approximately 21 J×mol-1×K-1. a) How much energy is required to raise the temperature of a room dimensions 5.5 m x 6.5 m x 3.0 m by 10°C from room temperature (298.15 K) assuming ideal behavior? b) How long will it take a heater rated at 1.5 kW to achieve that increase if 1 W = 1 J×s-1 (assuming no loss)?
During a chemistry lab, you take a 0.4 kg sample of ice and put it in a beaker with a thermometer. You then place the beaker with the ice on
0 the temperature of the ice is -18
=
a hot plate, and turn on the hot plate. This hot plate adds heat to the ice at a rate of 330 W. At time t
°C.
Because of the large heat capacity of water and ice, you may assume in this problem that all the heat goes into the sample of ice, and that
we can ignore the amount of heat going into the beaker and thermometer. Also assume no heat escapes from the system.
Some useful values:
●
Specific heat of water: C =
Specific heat of ice: Ci
= 2100 J/kg K
• Latent heat of fusion: L = 334 000 J/kg
●
4200 J/kg K
=
1a) At what time does the ice reach a temperature of -3.5°C?
answer=
units?
1b) At what time has all the ice melted?
answer=
units?
Check your answer
Check your answer
1c) After the ice has completely melted, we're left with 0.4 kg of water.
Check your answer
answer=
units?
not yet solved
not yet solved…
Consider a room that is initially at the outdoor temperature of 20°C. The room contains a 40-W lightbulb, a 110-W TV set, a 300-W refrigerator, and a 1200-W iron. Assuming no heat transfer through the walls, determine the rate of increase of the energy content of the room when all of these electric devices are on.
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 20.2 - Prob. 20.1QQCh. 20.3 - Prob. 20.2QQCh. 20.6 - Prob. 20.3QQCh. 20.6 - Characterize the paths in Figure 19.12 as...Ch. 20.7 - Prob. 20.5QQCh. 20 - Prob. 1OQCh. 20 - Prob. 2OQCh. 20 - Prob. 3OQCh. 20 - Prob. 4OQCh. 20 - Prob. 5OQ
Ch. 20 - Prob. 6OQCh. 20 - Prob. 7OQCh. 20 - Prob. 8OQCh. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - Prob. 12OQCh. 20 - Prob. 13OQCh. 20 - Prob. 14OQCh. 20 - Prob. 15OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 10CQCh. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 12CQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - Prob. 5PCh. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - Prob. 11PCh. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 22PCh. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - A gas is taken through the cyclic process...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - A thermodynamic system undergoes a process in...Ch. 20 - Prob. 34PCh. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58APCh. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Review. Following a collision between a large...Ch. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81CPCh. 20 - Prob. 82CPCh. 20 - Prob. 83CPCh. 20 - Prob. 84CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) The inside of a hollow cylinder is maintained at a temperature Ta, and the outside is at a lower temperature, Tb (Fig. P19.45). The wall of the cylinder has a thermal conductivity k. Ignoring end effects, show that the rate of energy conduction from the inner surface to the outer surface in the radial direction is dQdt=2Lk[TaTbln(b/a)] Suggestions: The temperature gradient is dT/dr. A radial energy current passes through a concentric cylinder of area 2rL. (b) The passenger section of a jet airliner is in the shape of a cylindrical tube with a length of 35.0 m and an inner radius of 2.50 m. Its walls are lined with an insulating material 6.00 cm in thickness and having a thermal conductivity of 4.00 105 cal/s cm C. A heater must maintain the interior temperature at 25.0C while the outside temperature is 35.0C. What power must be supplied to the heater? Figure P19.45arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardEqual masses of substance A at 10.0C and substance B at 90.0C are placed in a well-insulated container of negligible mass and allowed to come to equilibrium. If the equilibrium temperature is 75.0Q which substance has the larger specific heat? (a) substance A (b) substance B (c) The specific heats are identical. (d) The answer depends on the exact initial temperatures. (e) More information is required.arrow_forward
- In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 220-W electric immersion heater in 0.320 kgm of water. (a) How much heat must be added to the water to raise its temperature from 20.0°C to 80.0°C? (b) How much time is required? Assume that all of the heater’s power goes into heating of water Thermodynamicsarrow_forwardA 220-lb athlete drinks a glass of soda (125 calories) and walks up to the top of a Library Building. What is the change in his internal energy, assuming the only heat transfer is the 125 calories from the soda drink, and the only work done by the athlete is lifting his own weight to the 6th floor? Assume 3m per floor.arrow_forwardOn a cold day, you grab a piece of metal and a fallen tree limb, both with bare hands. Both have been lying outside for a long time and are at the same temperature. The metal feels colder than the tree limb. Why?arrow_forward
- Q:33)arrow_forwardA double-pipe parallel-flow heat exchanger is used to heat cold tap water with hot water. Hot water (cp = 4.25 kJ/kg·K) enters the tube at 85°C at a rate of 1.4 kg/s and leaves at 50°C. The heat exchanger is not well insulated, and it is estimated that 3 percent of the heat given up by the hot fluid is lost from the heat exchanger. If the overall heat transfer coefficient and the surface area of the heat exchanger are 1150 W/m2·K and 4 m2, respectively, determine the rate of heat transfer to the cold water and the log mean temperature difference for this heat exchanger.arrow_forward8arrow_forward
- A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit board houses 80 closely spaced logic chips on one side, each dissipating 0.06 W. The board is impregnated with copper fillings and has an effective thermal conductivity of 16 W/m·K. All the heat generated in the chips is conducted across the circuit board and is dissipated from the back side of the board to the ambient air. Determine the temperature difference between the two sides of the circuit board.arrow_forwardIn tropical climates, the water near the surface of the ocean remains warm throughout the year as a result of solar energy absorption. In the deeper parts of the ocean, however, the water remains at a relatively low temperature since the sun’s rays cannot penetrate very far. It is proposed to take advantage of this temperature difference and construct a power plant that will absorb heat from the warm water near the surface and reject the waste heat to the cold water a few hundred meters below. Determine the maximum thermal efficiency of such a plant if the water temperatures at the two respective locations are 24 and 3°C.arrow_forwardA student living in a 3-m * 4-m * 4-m dormitory room turns on her 100-W fan before she leaves the room on a summer day, hoping that the room will be cooler when she comes back in the evening. Assuming all the doors and windows are tightly closed and disregarding any heat transfer through the walls and the windows, determine the temperature in the room when she comes back 8 h later. Use specific heat values at room temperature, and assume the room to be at 100 kPa and 20°C in the morning when she leaves.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY