
Concept explainers
(a)
The specific heat of unknown sample.
(a)

Answer to Problem 13P
The specific heat of unknown sample is
Explanation of Solution
Given info: The mass of the calorimeter is
Formula to calculate the heat lost by cooper block is,
Here,
Formula to calculate the heat lost by unknown sample is,
Here,
Formula to calculate the heat gained by the water is,
Here,
Formula to calculate the heat gained by calorimeter is,
Here,
From the conservation of energy, heat lost is equal to heat gained.
Substitute
Conclusion:
Therefore, the specific heat of unknown sample is
(b)
The specific heat of unknown sample.
(b)

Answer to Problem 13P
The unknown sample may be beryllium.
Explanation of Solution
Given info: The mass of the calorimeter is
The specific heat of unknown sample is
This value of specific heat is not given in the given table. So, it is difficult to make a definite identification of the sample. The closest value of this which is given in table is
Conclusion:
Therefore, the unknown sample may be beryllium.
(c)
To explain: The answer obtained in part (b).
(c)

Answer to Problem 13P
The specific heat may be defined as either the material having this amount of specific heat is not listed in the table or it may be an unknown alloy.
Explanation of Solution
The specific heat may be defined as the heat capacity per unit mass. It is the amount of heat per unit mass required to raise the temperature by
The value of specific heat obtained in part (b) does not correspond to any material given in table 19.1. So, either the material is not listed in the table or it may be an unknown alloy.
Conclusion:
Therefore, either the material having this amount of specific heat is not listed in the table or it may be an unknown alloy.
Want to see more full solutions like this?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- In the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forwardDon't use aiarrow_forwardMake sure to draw a sketch with scale pleasearrow_forward
- Make sure to draw a sketch with scalearrow_forwardUltimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forwardMake sure to draw a sketch with scale as wellarrow_forward
- Make sure to draw a sketch with scale pleasearrow_forwardKirby jumps towards his enemy/ally, Meta Knight, at 2.06 m/s while Meta Knight glides in the opposite direction (toward Kirby) at 5.06 m/s. Kirby then begins to inhale, swallowing Meta Knight. What is Kirby/Meta Knight’s velocity immediately after being swallowed? Please put the magnitude of the velocity and then mark direction using dropdown menu. Kirby has a mass of 0.283 kg and Meta Knight has a mass of 0.538 kg.arrow_forwardNo Aiarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





