![College Physics](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_largeCoverImage.gif)
College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 68PE
Integrated Concepts
(a) What is the cost of heating a hot tub containing 1500 kg of water from 10.0°C to 40.0°C, assuming 75.0% efficiency to account for
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Ammonia enters the compressor of an industrial refrigeration plant at 2 bar, -10°C with a mass flow rate of 15 kg/min and is compressed to 12 bar, 140°C. Heat transfer from the compressor to its surroundings occurs at a rate of 6 kW. For steady-state operation, calculate,
(a) the power input to the compressor, in kW, Answer
(b) the entropy production rate, in kW/K, for a control volume encompassing the compressor and its immediate surroundings such that heat transfer occurs at 300 K.
No chatgpt pls will upvote
Shown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51.
Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity.
a=
Chapter 20 Solutions
College Physics
Ch. 20 - Can a wire carry a current and still be...Ch. 20 - Car batteries are rated in ampere-hours (A h )....Ch. 20 - If two different wires having identical...Ch. 20 - Why are two conducting paths from a voltage source...Ch. 20 - In cars, one battery terminal is connected to the...Ch. 20 - Why isn't a bird sitting on a high-voltage power...Ch. 20 - The IR drop across a resistor means that there is...Ch. 20 - How is the I R drop in a resistor similar to the...Ch. 20 - In which of the three semiconducting materials...Ch. 20 - Does the resistance of an object depend on the...
Ch. 20 - If aluminum and copper wires of the same length...Ch. 20 - Explain why R=R0(1 + a?T) for the temperature...Ch. 20 - Why do incandescent lightbulbs grow dim late in...Ch. 20 - The power dissipated in a resistor is given by P =...Ch. 20 - Give an example of a use of AC power other than in...Ch. 20 - Why do voltage, current, and power go through zero...Ch. 20 - You are riding in a train, gazing into the...Ch. 20 - Using an ohmmeter, a student measures the...Ch. 20 - What are the two major hazards of electricity?Ch. 20 - Why isn’t a short circuit a shock hazard?Ch. 20 - What determines the severity of a shock? Can you...Ch. 20 - An electrified needle is used to burn off warts,...Ch. 20 - Some surgery is performed with high-voltage...Ch. 20 - Some devices often used in bathrooms, such as...Ch. 20 - We are often advised to not flick electric...Ch. 20 - Before working on a power transmission line,...Ch. 20 - Why is the resistance of wet skin so much smaller...Ch. 20 - Could a person on intravenous infusion (an IV) be...Ch. 20 - In view of the small currents that cause shock...Ch. 20 - Note that in Figure 20.28, both the concentration...Ch. 20 - Define depolarization, repolarization, and the...Ch. 20 - Explain the properties of myelinated nerves in...Ch. 20 - What is the current in milliamperes produced by...Ch. 20 - A total of 600 C of charge passes through a...Ch. 20 - What is the current when a typical static charge...Ch. 20 - Find the current when 2.00 nC jumps between your...Ch. 20 - A large lightning bolt had a 20,000-A current and...Ch. 20 - The 200-A current through a spark plug moves 0.300...Ch. 20 - (a) A defibrillator sends a 6.00-A current through...Ch. 20 - During open-heart surgery, a defibrillator can be...Ch. 20 - (a) A defibrillator passes 12.0 A of current...Ch. 20 - A clock battery wears out after moving 10,000 C of...Ch. 20 - The batteries of a submerged non-nuclear submarine...Ch. 20 - Electron guns are used in X-ray tubes. The...Ch. 20 - A large cyclotron directs a beam of He ++ nuclei...Ch. 20 - Repeat the above example on Example 20.3, but for...Ch. 20 - Using the results of the above example on Example...Ch. 20 - A 14-gauge copper wire has a diameter of 1.628 mm....Ch. 20 - SPEAR, a storage ring about 72.0 m in diameter at...Ch. 20 - What current flows through the bulb of a 3.00-V...Ch. 20 - Calculate the effective resistance of a pocket...Ch. 20 - What is the effective resistance of a car’s...Ch. 20 - How many volts are supplied to operate an...Ch. 20 - (a) F ind the voltage drop in an extension cord...Ch. 20 - A power transmission line is hung from metal...Ch. 20 - What is the resistance of a 20.0-m-long piece of...Ch. 20 - The diameter of 0-gauge copper wire is 8.252 mm....Ch. 20 - If the 0.100-mm diameter tungsten filament in a...Ch. 20 - Find the ratio of the diameter of aluminum to...Ch. 20 - What current flows through a 2.54-cm-diameter rod...Ch. 20 - (a) To what temperature must you raise a copper...Ch. 20 - A resistor made of Nichrome wire is used in an...Ch. 20 - Of what material is a resistor made if its...Ch. 20 - An electronic device designed to operate at any...Ch. 20 - a) Of what material is a wire made, if it is 25.0...Ch. 20 - Assuming a constant temperature coefficient of...Ch. 20 - A wire is drawn through a die, stretching it to...Ch. 20 - A copper wire has a resistance of 0.500at 20.0°C,...Ch. 20 - (a) Digital medical thermometers determine...Ch. 20 - Integrated Concepts (a) Redo Exercise 20.25 taking...Ch. 20 - Unreasonable Results (a) To what temperature must...Ch. 20 - What is the power of a 1.00 102 MV lightning boit...Ch. 20 - What power is supplied to the starter motor of a...Ch. 20 - A charge of 4.00 C of charge passes through a...Ch. 20 - How many watts does a flashlight that has 6.00102C...Ch. 20 - Find the power dissipated in each of these...Ch. 20 - Verify that the units of a volt-ampere are watts,...Ch. 20 - Show that the units 1 V2/=1W , as implied by the...Ch. 20 - Show that the units 1 A 2 = 1W, as implied by the...Ch. 20 - Verify the energy unit equivalence that 1 kWh =...Ch. 20 - Electrons in an X-ray tube are accelerated through...Ch. 20 - An electric water heater consumes 5.00 kW for 2.00...Ch. 20 - With a 1200-W toaster, how much electrical energy...Ch. 20 - What would be the maximum cost of a CFL such that...Ch. 20 - Some makes of older cars have 6.00-V electrical...Ch. 20 - Alkaline batteries have the advantage of putting...Ch. 20 - A cauterizer, used to stop bleeding in surgery,...Ch. 20 - The average television is said to be on 6 hours...Ch. 20 - An old lightbulb draws only 50.0 W, rather than...Ch. 20 - -gauge copper wire has a diameter of 9.266 mm....Ch. 20 - Integrated Concepts Cold vaporizers pass a current...Ch. 20 - Integrated Concepts (a) What energy is dissipated...Ch. 20 - Integrated Concepts What current must be produced...Ch. 20 - Integrated Concepts How much time is needed for a...Ch. 20 - Integrated Concepts Hydroelectric generators (see...Ch. 20 - Integrated Concepts (a) Assuming 95.0% efficiency...Ch. 20 - Integrated Concepts A light-rail commuter train...Ch. 20 - Integrated Concepts (a) An aluminum power...Ch. 20 - Integrated Concepts (a) An immersion heater...Ch. 20 - Integrated Concepts (a) What is the cost of...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Construct Your Own Problem Consider an electric...Ch. 20 - (a) What is the hot resistance of a 25-W light...Ch. 20 - Certain heavy industrial equipment uses AC power...Ch. 20 - A certain circuit breaker trips when the rms...Ch. 20 - Military aircraft use 400-Hz AC power, because it...Ch. 20 - A North American tourist takes his 25.0-W, 120-V...Ch. 20 - In this problem, you will verify statements made...Ch. 20 - A small office-building air conditioner operates...Ch. 20 - What is the peak power consumption of a 12G-V AC...Ch. 20 - What is the peak current through a 500-W room...Ch. 20 - Two different electrical devices have the same...Ch. 20 - Nichrome wire is used in some radiative heaters....Ch. 20 - Find the time after t = 0 when the instantaneous...Ch. 20 - (a) At what two times in the first period...Ch. 20 - (a) Haw much power is dissipated in a short...Ch. 20 - What voltage is involved in a 1.44-kW short...Ch. 20 - Find the current through a person and identify the...Ch. 20 - While taking a bath, a person touches the metal...Ch. 20 - Foolishly trying to fish a burning piece of bread...Ch. 20 - (a) During surgery, a current as small as 20.0 ?...Ch. 20 - (a) What is the resistance of a 220-V AC short...Ch. 20 - A heart defibrillator passes 10.0 A through a...Ch. 20 - Integrated Concepts A short circuit in a 120-V...Ch. 20 - Construct Your Own Problem Consider a person...Ch. 20 - Integrated Concepts Use the ECG in Figure 20.34 to...Ch. 20 - Integrated Concepts (a) Referring to Figure 20.34,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Identify me theme or themes exemplified by (a) the sharp quills of a porcupine (b) the development of a multice...
Campbell Biology in Focus (2nd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
For the generic equilibrium HA(aq) ⇌ H + (aq) + A- (aq), which of these statements is true?
The equilibrium con...
Chemistry: The Central Science (14th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
1. How many cervical, thoracic, lumbar, sacral, and coccygeal vertebrae are normally present in the vertebral ...
Human Anatomy & Physiology (2nd Edition)
5.28 Neurofibromatosis is an autosomal dominant disorder inherited on human chromosome. Part of the analysis ma...
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the density and atomic mass of copper are respectively 8.80 x 103 kg/m³ and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following. (a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 13.5 A current 1.988-4 See if you can obtain an expression for the drift speed of electrons in a copper wire in terms of the current in the wire, the diameter of the wire, the molecular weight and mass density of copper, Avogadro's number, and the charge on an electron. m/s (b) the Hall voltage if a 2.68 T field is applied perpendicular to the wire 3.34e-6 x Can you start with basic equations for the electric and magnetic forces acting on the electrons moving through the wire and obtain a relationship between the magnitude of the electric and magnetic field and the drift speed of the electrons? How is the magnitude of the electric field related to the Hall voltage and the diameter of the wire? Varrow_forward(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 0.685 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 0.0084 m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 0.0303 x marrow_forwardTwo charges are placed on the x axis. One of the charges (91 = +6.63 μC) is at x₁ = +3.00 cm and the other (92 = -24.2 μC) is at x2 = +9.00 cm. Find the net electric field (magnitude and direction given as a plus or minus sign) at (a) x = 0 cm and (b) x = +6.00 cm.arrow_forward
- The diagram shows the all of the forces acting on a body of mass 2.76 kg. The three forces have magnitudes F1 = 65.2 N, F2 = 21.6 N, and F3 = 77.9 N, with directions as indicted in the diagram, where θ = 49.9 degrees and φ = 21.1 degrees. The dashed lines are parallel to the x and y axes. At t = 0, the body is moving at a speed of 6.87 m/s in the positive x direction. a. whats the x component of the acceleration? b. whats the y component of the acceleration? c. whats the speed of the body in m/s at t = 12.3s? d. whats the magnitude of the displacement of the body n meters between t = 0 and 12.3s?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- A cylinder with a piston contains 0.153 mol of nitrogen at a pressure of 1.83×105 Pa and a temperature of 290 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. Part A Compute the temperature at the beginning of the adiabatic expansion. Express your answer in kelvins. ΕΠΙ ΑΣΦ T₁ = ? K Submit Request Answer Part B Compute the temperature at the end of the adiabatic expansion. Express your answer in kelvins. Π ΑΣΦ T₂ = Submit Request Answer Part C Compute the minimum pressure. Express your answer in pascals. ΕΠΙ ΑΣΦ P = Submit Request Answer ? ? K Paarrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. Τ One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, pV = constant. T One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY