College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 47P
To determine
The resistance R in an RL circuit
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A series RLC circuit consist of L = 1H, C = 0.05 F and an unknown resistance R. If the applied voltage lags the current by an angle of 63.43º, find the value of R. Assume w = 4 rad/s.
9. In the circuit shown, assume the battery emf is 20.0 V, R = 1.00M, and C = 2.00µF. The switch is close
t = 0. At what time t will the voltage across the capacitor be 15.0 V?
R
www
ε
Using the circuit shown in question number 9, find the current at time t where the voltage across the capa
be 15.0 V?
Listen
In a R-L-CAC circuit, R= 151 Ohm, ZL- j 1,002 Ohm, ZC= -j 853 Ohm. Supply
voltage is v= 853 sin( 151 t) volts. Calculate the MAGNITUDE of r.m.s value of the
current.
Chapter 20 Solutions
College Physics:
Ch. 20.2 - Prob. 20.1QQCh. 20.2 - A bar magnet is falling toward the center of a...Ch. 20.2 - Two circular loops are side by side and lie in the...Ch. 20.3 - A horizontal metal bar oriented east-west drops...Ch. 20.3 - You intend to move a rectangular loop of wire into...Ch. 20.6 - Prob. 20.6QQCh. 20 - A bar magnet is held stationary while a circular...Ch. 20 - Does dropping a magnet down a copper tube produce...Ch. 20 - Figure CQ20.3 shows three views of a circular loop...Ch. 20 - A loop of wire is placed in a uniform magnetic...
Ch. 20 - As the conducting bar in Figure CQ20.5 moves to...Ch. 20 - How is electrical energy produced in dams? (That...Ch. 20 - Figure CQ20.7 shows a slidewire generator with...Ch. 20 - As the bar in Figure CQ20.5 moves perpendicular to...Ch. 20 - Eddy current are induced currents set up in a...Ch. 20 - The switch S in Figure 20.27 is closed at t = 0...Ch. 20 - A piece of aluminum is dropped vertically downward...Ch. 20 - When the switch in Figure CQ20.12a is closed, a...Ch. 20 - Prob. 13CQCh. 20 - A magneto is used to cause the spark in a spark...Ch. 20 - A uniform magnetic field of magnitude 0.50 T is...Ch. 20 - Find the flux of Earths magnetic field of...Ch. 20 - Prob. 3PCh. 20 - A long, straight wire carrying a current of 2.00 A...Ch. 20 - Prob. 5PCh. 20 - A magnetic field of magnitude 0.300 T is oriented...Ch. 20 - A cube of edge length = 2.5 cm is positioned as...Ch. 20 - Transcranial magnetic stimulation (TMS) is a...Ch. 20 - Three loops of wire move near a long straight wire...Ch. 20 - The flexible loop in Figure P20.10 has a radius of...Ch. 20 - Inductive charging is used to wirelessly charge...Ch. 20 - Medical devices implanted inside the body are...Ch. 20 - A technician wearing a circular metal band on his...Ch. 20 - In Figure P20.14, what is the direction of the...Ch. 20 - Prob. 15PCh. 20 - Find the direction of the current in the resistor...Ch. 20 - A circular loop of wire lies below a long wire...Ch. 20 - A square, single-turn wire loop = 1.00 cm on a...Ch. 20 - Prob. 19PCh. 20 - A circular coil enclosing an area of 100 cm2 is...Ch. 20 - To monitor the breathing of a hospital patient, a...Ch. 20 - An N-turn circular wire coil of radius r lies in...Ch. 20 - A truck is carrying a steel beam of length 15.0 m...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - In one of NASAs space tether experiments, a...Ch. 20 - Prob. 27PCh. 20 - An astronaut is connected to her spacecraft by a...Ch. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Considerable scientific work is currently under...Ch. 20 - A flat coil enclosing an area of 0.10 m2 is...Ch. 20 - A generator connected to the wheel or hub of a...Ch. 20 - A motor has coils with a resistance of 30.0 and...Ch. 20 - A coil of 10.0 turns is in the shape of an eclipse...Ch. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - An emf of 24.0 mV is induced in a 500-turn coil...Ch. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Additional Problems Two circular loop of wire...Ch. 20 - Prob. 54APCh. 20 - Prob. 55APCh. 20 - Prob. 56APCh. 20 - An 820-turn wire coil of resistance 24.0 is...Ch. 20 - A spacecraft is in 4 circular orbit of radius...Ch. 20 - Prob. 59APCh. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - The magnetic field shown in Figure P20.63 has a...Ch. 20 - Prob. 64APCh. 20 - In Figure P20.65 the rolling axle of length 1.50 m...Ch. 20 - An N-turn square coil with side and resistance R...Ch. 20 - A conducting rectangular loop of mass M,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a series RL circuit with a battery. The battery has been disconnected for a long time, and then it is reconnected at time t = 0. (a) What is the current after a long time? (b) What is the current at time t? R = 6.6 ohm; L = 2.7 H; V = 24.2 V; t₂ = 0.429 s. (a) (b; current at time t = t₂)arrow_forwardThe current in a series RL circuit increases to 20% of its final value in 3.1 ms. If L = 1.8 mH, what’s the resistance?arrow_forwardA series circuit contains R=0, L=1 H, C=10-4 F and E=100sin50t V. Initially, the charge and current are zero. Determine the first time (after t=0) at which the charge on the capacitor is zero.arrow_forward
- In an RC series circuit, the EMF is € = 12.0 V, the resistance = 1.6 MQ and the capacitance = 3.4 µF. Calculate the time constant of the circuit. %3D Report the answer in seconds to 1 decimal place.arrow_forwardThe switch on an RC circuit is closed at t = 0. Given thate = 6.0 V, R = 92 Ω, and C = 28 mF, how much charge is on thecapacitor at time t = 4.0 ms?arrow_forwardAn RL circuit with L = 3.25 H and an RC circuit with C = 2.85 µF have the same time constant. (a) If the two circuits have the same resistance, R, what is the value of R? kQ (b) What is this common time constant? msarrow_forward
- ASAParrow_forwardThe battery terminal voltage in the figure below is E = 8.30 V and the current I reaches half its maximum value of 5.00 A at t = 0.200 s after the switch is closed. HINT S + E S Apply the expression for the current in an RL circuit. V R (a) Calculate the time constant 7 (in s). V ele Click the hint button again to remove this hint. (b) What is the potential difference (in V) across the inductor at t = 0.200 s? (c) What is the potential difference (in V) across the inductor in the instant after the switch is closed at t = 0?arrow_forward1.00 µF, R = 2.00 x 10° Q, and Ɛ = 10.0 V. At the instant 16.2 s after the switch is closed, The values of the components in a simple series RC circuit containing a switch (see figure below) are C = calculate the following. %3D S R (a) the charge on the capacitor q : µC (b) the current in the resistor I = nA (c) the rate at which energy is being stored in the capacitor rate = nW (d) the rate at which energy is being delivered by the battery Poattery nWarrow_forward
- The current in an RL circuit drops from 1.0 A to 10 mA in the first second following removal of the battery from the circuit. If L is 10 H, find the resistance R in the circuit.arrow_forwardIn an RLC series circuit, L = 1H,R= 42, C = 0.5F and the voltage in a circuit is V(t) = 2 cos 2t volts. The charge q on a plate of a condenser is given by the differential equation d²q dt2 L + R + T9 = V(t). Solve the differential equation for qarrow_forwardAn RL circuit with L = 3.00 H and an RC circuit withC = 3.00 µF have the same time constant. If the two circuitshave the same resistance R, (a) what is the value of R and (b)what is this common time constant?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY