College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 16P
Find the direction of the current in the resistor shown in Figure P20.16 (a) at the instant the switch is closed, (b) after the switch has been closed for several minutes, and (c) at the instant the switch is opened.
Figure P20.16
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Find the direction of the current in the resistor shown in
Figure P20.16 (a) at the instant the switch is closed, (b) after
the switch has been closed for several minutes, and (c) at the
instant the switch is opened.
F000
DOC
S
E
Figure P20.16
www
R
An 820-turn wire coil of resistance 24.0 V is placed on top of a 12 500-turn, 7.00-cm-long solenoid, as in Figure P20.57. Both coil and solenoid have crosssectional areas of 1.00 × 10-4 m2 . (a) How long does it take the solenoid current to reach 0.632 times its maximum value? (b) Determine the average back emf caused by the self-inductance of the solenoid during this interval. The magnetic field produced by the solenoid at the location of the coil is one-half as strong as the field at the center of the solenoid. (c) Determine the average rate of change in magnetic flux through each turn of the coil during the stated interval. (d) Find the magnitude of the average induced current in the coil.
What is the current through the battery shown when the switch is (a) open and (b) closed?
Chapter 20 Solutions
College Physics:
Ch. 20.2 - Prob. 20.1QQCh. 20.2 - A bar magnet is falling toward the center of a...Ch. 20.2 - Two circular loops are side by side and lie in the...Ch. 20.3 - A horizontal metal bar oriented east-west drops...Ch. 20.3 - You intend to move a rectangular loop of wire into...Ch. 20.6 - Prob. 20.6QQCh. 20 - A bar magnet is held stationary while a circular...Ch. 20 - Does dropping a magnet down a copper tube produce...Ch. 20 - Figure CQ20.3 shows three views of a circular loop...Ch. 20 - A loop of wire is placed in a uniform magnetic...
Ch. 20 - As the conducting bar in Figure CQ20.5 moves to...Ch. 20 - How is electrical energy produced in dams? (That...Ch. 20 - Figure CQ20.7 shows a slidewire generator with...Ch. 20 - As the bar in Figure CQ20.5 moves perpendicular to...Ch. 20 - Eddy current are induced currents set up in a...Ch. 20 - The switch S in Figure 20.27 is closed at t = 0...Ch. 20 - A piece of aluminum is dropped vertically downward...Ch. 20 - When the switch in Figure CQ20.12a is closed, a...Ch. 20 - Prob. 13CQCh. 20 - A magneto is used to cause the spark in a spark...Ch. 20 - A uniform magnetic field of magnitude 0.50 T is...Ch. 20 - Find the flux of Earths magnetic field of...Ch. 20 - Prob. 3PCh. 20 - A long, straight wire carrying a current of 2.00 A...Ch. 20 - Prob. 5PCh. 20 - A magnetic field of magnitude 0.300 T is oriented...Ch. 20 - A cube of edge length = 2.5 cm is positioned as...Ch. 20 - Transcranial magnetic stimulation (TMS) is a...Ch. 20 - Three loops of wire move near a long straight wire...Ch. 20 - The flexible loop in Figure P20.10 has a radius of...Ch. 20 - Inductive charging is used to wirelessly charge...Ch. 20 - Medical devices implanted inside the body are...Ch. 20 - A technician wearing a circular metal band on his...Ch. 20 - In Figure P20.14, what is the direction of the...Ch. 20 - Prob. 15PCh. 20 - Find the direction of the current in the resistor...Ch. 20 - A circular loop of wire lies below a long wire...Ch. 20 - A square, single-turn wire loop = 1.00 cm on a...Ch. 20 - Prob. 19PCh. 20 - A circular coil enclosing an area of 100 cm2 is...Ch. 20 - To monitor the breathing of a hospital patient, a...Ch. 20 - An N-turn circular wire coil of radius r lies in...Ch. 20 - A truck is carrying a steel beam of length 15.0 m...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - In one of NASAs space tether experiments, a...Ch. 20 - Prob. 27PCh. 20 - An astronaut is connected to her spacecraft by a...Ch. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Considerable scientific work is currently under...Ch. 20 - A flat coil enclosing an area of 0.10 m2 is...Ch. 20 - A generator connected to the wheel or hub of a...Ch. 20 - A motor has coils with a resistance of 30.0 and...Ch. 20 - A coil of 10.0 turns is in the shape of an eclipse...Ch. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - An emf of 24.0 mV is induced in a 500-turn coil...Ch. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Additional Problems Two circular loop of wire...Ch. 20 - Prob. 54APCh. 20 - Prob. 55APCh. 20 - Prob. 56APCh. 20 - An 820-turn wire coil of resistance 24.0 is...Ch. 20 - A spacecraft is in 4 circular orbit of radius...Ch. 20 - Prob. 59APCh. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - The magnetic field shown in Figure P20.63 has a...Ch. 20 - Prob. 64APCh. 20 - In Figure P20.65 the rolling axle of length 1.50 m...Ch. 20 - An N-turn square coil with side and resistance R...Ch. 20 - A conducting rectangular loop of mass M,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit of Figure P21.57, the switch S has been open for a long time. It is then suddenly closed. Take = 10.0 V, R1 = 50.0 k, R2 = 100 k, and C = 10.0 F. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time.arrow_forwardIn the circuit of Figure P27.25, the switch S has been open for a long time. It is then suddenly closed. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. Figure P27.25 Problems 25 and 26.arrow_forwardA motor in normal operation carries a direct current of 0.850 A when connected to a 120-V power supply. The resistance of the motor windings is 11.8 . While in normal operation, (a) what is the back emf generated by the motor? (b) At what rate is internal energy produced in the windings? (c) What If? Suppose a malfunction slops the motor shaft from rotating. At what rate will internal energy be produced in the windings in this case? (Most motors have a thermal switch that will turn off the motor to prevent overheating when this stalling occurs.)arrow_forward
- Each of the three situations in Figure P32.68 shows a resistor in a circuit in which currents are induced. Using Lenzs law, determine whether the current in each situation is from a to b or from b to a. a. If the current I in the wire in Figure P32.68A is increased from zero to I, what is the direction of the current induced across the resistor R? b. The switch in Figure P32.68B is initially closed and is thrown open at t = 0. What is the direction of the current induced across the resistor R immediately afterward? c. A bar magnet is brought close to the circuit shown in Figure P32.68C. What is the direction of the current induced across the resistor R?arrow_forwardFigure P29.84 shows a circuit that consists of two identical emf devices. If R1 = R2 = R and the switch is closed, find an expression (in terms of R and ) for the current I that is in the branch from point a to b.arrow_forwardFigure P18.37 shows a simplified model of a cardiac defibrillator, a device used to patients in ventricular fibrillation. When the switch S is toggled to the left, the capacitor C charges through the resistor R .When the switch is toggled to the right, the capacitor discharges current through the patients torso, modeled as the resistor Rtorso, allowing the hearts normal rhythm to be reestablished. (a) If the capacitor is initially uncharged with C = 8.00 F and = 1250 V, find the value of R required to charge the capacitor to a voltage of 775 V in 1.50 s. (b) If the capacitor is then discharged across the patients torso with, Rtorso = 1250 , calculate the voltage across the capacitor after 5.00 ms. Figure P18.37arrow_forward
- A circuit consists of a conducting movable bar and a lightbulb connected to two conducting rails as shown in Figure OQ31.10. An external magnetic field is directed perpendicular to the plane of the circuit. Which of the following actions will make the bulb light up? More than one statement may be correct, (a) The bar is moved to the left, (b) The bar is moved to the right. (c) The magnitude of the magnetic field is increased. (d) The magnitude of the magnetic field is decreased. (e) The bar is lifted off the rails.arrow_forwardShow that Equation 32.28 in the text Ls Kirchhoffs loop rule as applied to the circuit in Figure P32.56 with the switch thrown to position b.arrow_forwardIn Figure 33.9A (page 1052), the switch is closed at a at t = 0. Find an expression for the power dissipated by the resistor as a function of time, and sketch your result. Is the power lost greater as soon as the switch is closed or a long time after it has been closed? Does your answer make sense?arrow_forward
- In Figure P20.14, what is the direction ofthe current induced in the resistor at theinstant the switch is closed?arrow_forwardA2arrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where R = 14.0 Ω and C = 3.00 ×10^-6 F. The switch S is closed at t = 0. When the current in the circuit has magnitude 3.00 A, the charge on the capacitor is 40.0 × 10^−6 C. At what time t after the switch is closed is the charge on the capacitor equal to 40.0 x 10^-6 C? When the current has magnitude 3.00 A, at what rate is energy being stored in the capacitor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY