College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 48P
(a)
To determine
The inductive time constant of the circuit.
(b)
To determine
The current in the circuit after the switch is closed.
(c)
To determine
The final steady state current in the circuit.
(d)
To determine
the time taken by the current to reach 80% of its maximum value.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The current in the RL circuit shown below reaches half its maximum value in 0.5 ms after the switch S1 is
thrown. Determine (a) the time constant of the circuit and (b) the resistance of the circuit if
L = 200 mH.
R
Hints
a. The time constant is TL =
ms.
b. The resistance R is
Ω.
Consider the circuit shown in Figure P20.43. Takeε = 6.00 V, L = 8.00 mH, and R = 4.00 Ω. (a) What is theinductive time constant of the circuit? (b) Calculate the currentin the circuit 250. µs after the switch is closed. (c) What isthe value of the final steady-state current? (d) How long doesit take the current to reach 80.0% of its maximum value?
The capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. ΔVbattery = 60 V, C = 2.0 F, and R = 3.0 Ω. What is the current in the circuit immediately after the switch is closed, in Ampere?
Chapter 20 Solutions
College Physics:
Ch. 20.2 - Prob. 20.1QQCh. 20.2 - A bar magnet is falling toward the center of a...Ch. 20.2 - Two circular loops are side by side and lie in the...Ch. 20.3 - A horizontal metal bar oriented east-west drops...Ch. 20.3 - You intend to move a rectangular loop of wire into...Ch. 20.6 - Prob. 20.6QQCh. 20 - A bar magnet is held stationary while a circular...Ch. 20 - Does dropping a magnet down a copper tube produce...Ch. 20 - Figure CQ20.3 shows three views of a circular loop...Ch. 20 - A loop of wire is placed in a uniform magnetic...
Ch. 20 - As the conducting bar in Figure CQ20.5 moves to...Ch. 20 - How is electrical energy produced in dams? (That...Ch. 20 - Figure CQ20.7 shows a slidewire generator with...Ch. 20 - As the bar in Figure CQ20.5 moves perpendicular to...Ch. 20 - Eddy current are induced currents set up in a...Ch. 20 - The switch S in Figure 20.27 is closed at t = 0...Ch. 20 - A piece of aluminum is dropped vertically downward...Ch. 20 - When the switch in Figure CQ20.12a is closed, a...Ch. 20 - Prob. 13CQCh. 20 - A magneto is used to cause the spark in a spark...Ch. 20 - A uniform magnetic field of magnitude 0.50 T is...Ch. 20 - Find the flux of Earths magnetic field of...Ch. 20 - Prob. 3PCh. 20 - A long, straight wire carrying a current of 2.00 A...Ch. 20 - Prob. 5PCh. 20 - A magnetic field of magnitude 0.300 T is oriented...Ch. 20 - A cube of edge length = 2.5 cm is positioned as...Ch. 20 - Transcranial magnetic stimulation (TMS) is a...Ch. 20 - Three loops of wire move near a long straight wire...Ch. 20 - The flexible loop in Figure P20.10 has a radius of...Ch. 20 - Inductive charging is used to wirelessly charge...Ch. 20 - Medical devices implanted inside the body are...Ch. 20 - A technician wearing a circular metal band on his...Ch. 20 - In Figure P20.14, what is the direction of the...Ch. 20 - Prob. 15PCh. 20 - Find the direction of the current in the resistor...Ch. 20 - A circular loop of wire lies below a long wire...Ch. 20 - A square, single-turn wire loop = 1.00 cm on a...Ch. 20 - Prob. 19PCh. 20 - A circular coil enclosing an area of 100 cm2 is...Ch. 20 - To monitor the breathing of a hospital patient, a...Ch. 20 - An N-turn circular wire coil of radius r lies in...Ch. 20 - A truck is carrying a steel beam of length 15.0 m...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - In one of NASAs space tether experiments, a...Ch. 20 - Prob. 27PCh. 20 - An astronaut is connected to her spacecraft by a...Ch. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Considerable scientific work is currently under...Ch. 20 - A flat coil enclosing an area of 0.10 m2 is...Ch. 20 - A generator connected to the wheel or hub of a...Ch. 20 - A motor has coils with a resistance of 30.0 and...Ch. 20 - A coil of 10.0 turns is in the shape of an eclipse...Ch. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - An emf of 24.0 mV is induced in a 500-turn coil...Ch. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Additional Problems Two circular loop of wire...Ch. 20 - Prob. 54APCh. 20 - Prob. 55APCh. 20 - Prob. 56APCh. 20 - An 820-turn wire coil of resistance 24.0 is...Ch. 20 - A spacecraft is in 4 circular orbit of radius...Ch. 20 - Prob. 59APCh. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - The magnetic field shown in Figure P20.63 has a...Ch. 20 - Prob. 64APCh. 20 - In Figure P20.65 the rolling axle of length 1.50 m...Ch. 20 - An N-turn square coil with side and resistance R...Ch. 20 - A conducting rectangular loop of mass M,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . The generator at a large power plant has an output of 1,000,000 kW at 24,000 V. (a) If it were a DC generator, what would he the current in it? (b) What is its energy output each day—in joules and in kilowatt—hours? (c) If this energy is sold at a price of 10 cents per kilowatt-hour, how much revenue does the power plant generate each day?arrow_forwardThe self-inductance and capacitance of an oscillating LC circuit are L = 20 mH and C = 1.0 F , respectively. (a) What is the frequency of the oscillation? (b) If the maximum potential difference the plates of the capacitor is 50 V, what is the maximum current in the circuit?arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forward
- Do Kirchhoff’s rules apply to circuits that contain inductors and Capacitors?arrow_forwardIn Figure 33.9A (page 1052), the switch is closed at a at t = 0. Find an expression for the power dissipated by the resistor as a function of time, and sketch your result. Is the power lost greater as soon as the switch is closed or a long time after it has been closed? Does your answer make sense?arrow_forwardA motor in normal operation carries a direct current of 0.850 A when connected to a 120-V power supply. The resistance of the motor windings is 11.8 . While in normal operation, (a) what is the back emf generated by the motor? (b) At what rate is internal energy produced in the windings? (c) What If? Suppose a malfunction slops the motor shaft from rotating. At what rate will internal energy be produced in the windings in this case? (Most motors have a thermal switch that will turn off the motor to prevent overheating when this stalling occurs.)arrow_forward
- For the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 48 µF, ɛ = 80V, and R = 4 kQ, what is the charge (in mC) on the capacitor when the current in the circuit is | = 7 mA? %3D %D S R Select one: O A. 1.49 Ов. 4.27 Ос. 2.50 OD. 2.95 O E. 5.18arrow_forwardFor physics lab, two students constructed an RL circuit similar to the one shown in the figure, with = 6.00 V, L = 5.40 mH, and R = 8.00 Q. S R ele L (a) What is the inductive time constant of the circuit (in ms)? 0.065 X Apply the definition of the inductive time constant. ms ms (b) Calculate the current in the circuit (in A) 250 µs after the switch is closed. A (c) What is the value of the final steady-state current (in A)? A (d) After what time interval (in ms) does the current reach 80.0% of its maximum value?arrow_forwardFor the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 55 µF, ɛ = 80V, and R = 4 kQ, what is the charge (in mC) on the capacitor when the current in the circuit is | = 6 mA? %3D S C: R Select one: O A. 3.08 12 B. 5.12 C. 5.72 OD. 3.60 OE. OE. 1.93 +arrow_forward
- An ac current supply is described by the following function: I(t)= 7.80 cos 5.30 t where I is the current in ampere and t is time in seconds. What is the cycle time of the current supply? O A. 0.84 s ОВ. 0.19 s о С. 1.19 s O D. 0.53 sarrow_forwardProblem 6: An RL circuit is shown on the right. L 2.4 H. R 49 Ω.e 7.5 V Part (a) Switch A is closed at t- 0. Express the current I in the circuit as a function of time in terms of L, R, and ε. tR I(t)1-e L) Correct! Part (b) What's the direction of the current I, counterclockwise or clockwise'? Counterclockwise Correct! Part (c) Calculate the numerical value of 1 at t 0.1 s in amperes. Part (d) Calculate the numerical value of 1 at t-L/R s in amperes. A Part (e) Calculate the numerical value of I, in amperes, when t goes to infinity Part (f) After a long time, when the current reaches its steady value, open switch A and close switch B at the same time. Count this moment as t-0. Express the current in the circuit, I, as a function of time in terms of L, R, and e. -tR IL V Correct! Part (g) Now what is the direction of the current I, counter-clockwise or clockwise? Counterclockwise. VCorrect! Part (h) Calculate the numerical value of 1 at t 0.1 s in amperes. Part (i) Calculate the…arrow_forwardThe capacitor in the circuit shown below is initially uncharged. The switch is closed at t = 0 s. ΔVbattery = 60 V, C = 2.0 F, and R = 3.0 Ω. What is the current in the circuit immediately after the switch is closed, in Ampere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning