PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 45EAP
Equation 20.3 is the mean free path of a particle through a gas of identical particles of equal radius. An electron can be thought of as a point particle with zero radius.
a. Find an expression for the mean free path of an electron through a gas.
b. Electrons travel 3 km through the Stanford Linear Accelerator. In order for scattering losses to be negligible, the pressure inside the accelerator tube must be reduced to the point where the mean free path is at least 50 km. What is the maximum possible pressure inside the accelerator tube, assuming T = 20°C? Give your answer in both Pa and atm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose you have argon atoms in a sealed and isolated container, and they all have
the same speed of 4.2 x 10² m/s. The atoms then collide with one another until the
Maxwell-Boltzmann distribution is established.
a. What is the temperature of the gas at equilibrium?
b. What is the temperature at equilibrium if you would replace half of the argon
atoms by helium atoms?
a
A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius r and a coaxial cylindrical wire (the anode) of radius rb (see figure below)
with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.05 cm and that the wire along the axis has a diameter of 0.195 mm. The dielectric
strength of the gas between the central wire and the cylinder is 1.15 x 106 V/m. Use the equation 2πrle in to calculate the maximum potential difference that can be applied between the wire and
EO
the cylinder before breakdown occurs in the gas.
Cathode
Anode
=
a. Find the average translational kinetic energy of nitrogen molecules at room temperature, in eV.
b. Find the average translational kinetic energy of a 1 microgram dust particle at room temperature, in eV.
c. Find the mean speed of nitrogen molecules in thermal equilibrium, at room temperature.
d. Find the mean speed of a 1 microgram dust particle in thermal equilibrium, at room temperature.
Chapter 20 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 1EAP
Ch. 20 - Prob. 2EAPCh. 20 - Prob. 3EAPCh. 20 - Prob. 4EAPCh. 20 - Prob. 5EAPCh. 20 - Prob. 6EAPCh. 20 - Prob. 7EAPCh. 20 - Prob. 8EAPCh. 20 - Prob. 9EAPCh. 20 - Prob. 10EAPCh. 20 - Prob. 11EAPCh. 20 - Prob. 12EAPCh. 20 - Prob. 13EAPCh. 20 - Prob. 14EAPCh. 20 - Prob. 15EAPCh. 20 - Prob. 16EAPCh. 20 - Prob. 17EAPCh. 20 - Prob. 18EAPCh. 20 - Prob. 19EAPCh. 20 - Prob. 20EAPCh. 20 - Prob. 21EAPCh. 20 - Prob. 22EAPCh. 20 - Prob. 23EAPCh. 20 - Prob. 24EAPCh. 20 - Prob. 25EAPCh. 20 - A 10 g sample of neon gas has 1700 J of thermal...Ch. 20 - Prob. 27EAPCh. 20 - A 6.0 m × 8.0 m × 3.0 m room contains air at 20°C....Ch. 20 - Prob. 29EAPCh. 20 - Prob. 30EAPCh. 20 - .0 mol of a monatomic gas interacts thermally with...Ch. 20 - Prob. 32EAPCh. 20 - A rigid container holds 0.20 g of hydrogen gas....Ch. 20 - Prob. 34EAPCh. 20 - .0 mol of monatomic gas A interacts with 3.0 mol...Ch. 20 - Two containers hold several balls. Once a second,...Ch. 20 - Prob. 37EAPCh. 20 - From what height must an oxygen molecule fall in a...Ch. 20 - Dust particles are 10m in diameter. They are...Ch. 20 - Prob. 40EAPCh. 20 - Photons of light scatter off molecules, and the...Ch. 20 - Prob. 42EAPCh. 20 - Prob. 43EAPCh. 20 - a. Find an expression for the vrms of gas...Ch. 20 - Equation 20.3 is the mean free path of a particle...Ch. 20 - Uranium has two naturally occurring isotopes. 238U...Ch. 20 - On earth, STP is based on the average atmospheric...Ch. 20 - .0 × l023 nitrogen molecules collide with a 10 cm2...Ch. 20 - Prob. 49EAPCh. 20 - Prob. 50EAPCh. 20 - A 100 cm3 box contains helium at a pressure of 2.0...Ch. 20 - 2.0 g of helium at an initial temperature of 300 K...Ch. 20 - Prob. 53EAPCh. 20 - Scientists studying the behavior of hydrogen at...Ch. 20 - Prob. 55EAPCh. 20 - Prob. 56EAPCh. 20 - In the discussion following Equation 20.43 it was...Ch. 20 - Prob. 58EAPCh. 20 - n moles of a diatomic gas with Cv= 52 has initial...Ch. 20 - The 2010 Nobel Prize in Physics was awarded for...Ch. 20 - Prob. 61EAPCh. 20 - Prob. 62EAPCh. 20 - 63. moles of a monatomic gas and moles of a...Ch. 20 - Prob. 64EAPCh. 20 - 65. An experiment you're designing needs a gas...Ch. 20 - 66. Consider a container like that shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- iarrow_forwardThere are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will examine what the temperature of these various phenomena are. a. Give an expression for the temperature of an ideal gas in terms of pressure P, particle density per unit volume ρ, and fundamental constants. b. Near the surface of Venus, its atmosphere has a pressure fv= 95 times the pressure of Earth's atmosphere, and a particle density of around ρv = 1.1 × 1027 m-3. What is the temperature of Venus' atmosphere (in C) near the surface? c. The Orion nebula is one of the brightest diffuse nebulae in the sky (look for it in the winter, just below the three bright stars in Orion's belt). It is a very complicated mess of gas, dust, young star systems, and brown dwarfs, but let's estimate its temperature if we assume it is a uniform ideal gas. Assume it is a sphere of radius r = 4.7 × 1015 m (around 6 light years) with a total mass 4000 times the mass of the…arrow_forwardThe rms speed of a sample of gas is increased by 5%. A. What is the percent change in the temperature of the gas? B. What is the percent change in the pressure of the gas, assuming its volume is held constant?arrow_forward
- Part A A gas consists of a mixture of neon and argon. The rms speed of the neon atoms is 450 m/s. What is the rms speed of the argon atoms? Express your answer with the appropriate units. µA Value Units Submit Request Answer Provide Feedbackarrow_forwardMuch of the gas near the Sun is hydrogen nuclei. Its temperature would have to be 1.5 × 107 K for the rms speed to equal the escape speed from the Sun. a. What is that velocity, in meters per second?arrow_forwardEx. 51 The temperature of interstellar space has an average value of about 5 K. Find the rms speed of a proton in the Imp space. [m, = 1.673 x 10 27 kg, kg = 1.38 x 10 23 J/K] %3D %3Darrow_forward
- Two gases have the same number of molecules per cubic meter (N/V) and the same rms speed. The molecules of gas 2 are more massive than the molecules of gas 1.a. Do the two gases have the same pressure? If not, which is larger?b. Do the two gases have the same temperature? If not, which is larger?arrow_forwardA. If you double the typical speed of molecules in a gas, by what factor will the pressure change? B. Give a reasonable and complete explanation for your answer based on the kinetic model of the moleculesarrow_forwardThe rms speed of the molecules in 1.2 g of hydrogen gas is 1800 m/s. Part A What is the total translational kinetic energy of the gas molecules? Express your answer with the appropriate units. Etotal = 1.9 kJ Submit ✓ Correct Part B Previous Answers What is the thermal energy of the gas? Express your answer with the appropriate units. Eth = 1944 Submit μA Previous Answers Request Answerarrow_forward
- d)What is the root mean square of the speed? e)What is the speed with the highest velocity?Statistical mechanics-physicsarrow_forward2. Consider a monatomic gas in a 2-dimensional box with a rectangular area A. The velocity distribution for this gas is given by (you do not need to prove this): {-m (C +C)/ 2kT} f (C,,C,)=A e Find: A, the speed distribution, and the mean speed, C.arrow_forwardFor the exam scores given in Table P20.60, find the average score and the rms score. Table P20.60arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY