PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 44EAP
a. Find an expression for the vrms of gas molecules in terms of p, V, and the total mass of the gas M.
b. A gas cylinder has a piston at one end that is moving outward at speed during an isobaric expansion of the gas. Find an expression for the rate at which vrms is changing in terms of vpiston, the instantaneous value of vrms, and the instantaneous value L of the length of the cylinder.
c. A cylindrical sample chamber has a piston moving outward at 0.50 m/s during an isobaric expansion. The rms speed of the gas molecules is 450 m/s at the instant the chamber length is 1.5 m. At what rate is vrms changing?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. If you double the typical speed of molecules in a gas, by what factor will the pressure change?
B. Give a reasonable and complete explanation for your answer based on the kinetic model of the molecules
a
A Geiger-Mueller tube is a radiation detector that consists of a closed, hollow, metal cylinder (the cathode) of inner radius r and a coaxial cylindrical wire (the anode) of radius rb (see figure below)
with a gas filling the space between the electrodes. Assume that the internal diameter of a Geiger-Mueller tube is 3.05 cm and that the wire along the axis has a diameter of 0.195 mm. The dielectric
strength of the gas between the central wire and the cylinder is 1.15 x 106 V/m. Use the equation 2πrle in to calculate the maximum potential difference that can be applied between the wire and
EO
the cylinder before breakdown occurs in the gas.
Cathode
Anode
=
P1. Consider a gas of oxygen atoms (H0, = 32 g/mol). What should the temperature of
the gas be for the mean square speed of the atoms to be v = 100 m/s? While keeping the
temperature the same as before, what should the pressure of the gas be for a container of
volume V = 51 to be able to contain m = 1 kg of oxygen? How much does the temperature
of the gas increase if the container is dropped on the ground at a speed of u = 2 m/s? You
may neglect thermal conduction with the outside.
Chapter 20 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 1EAP
Ch. 20 - Prob. 2EAPCh. 20 - Prob. 3EAPCh. 20 - Prob. 4EAPCh. 20 - Prob. 5EAPCh. 20 - Prob. 6EAPCh. 20 - Prob. 7EAPCh. 20 - Prob. 8EAPCh. 20 - Prob. 9EAPCh. 20 - Prob. 10EAPCh. 20 - Prob. 11EAPCh. 20 - Prob. 12EAPCh. 20 - Prob. 13EAPCh. 20 - Prob. 14EAPCh. 20 - Prob. 15EAPCh. 20 - Prob. 16EAPCh. 20 - Prob. 17EAPCh. 20 - Prob. 18EAPCh. 20 - Prob. 19EAPCh. 20 - Prob. 20EAPCh. 20 - Prob. 21EAPCh. 20 - Prob. 22EAPCh. 20 - Prob. 23EAPCh. 20 - Prob. 24EAPCh. 20 - Prob. 25EAPCh. 20 - A 10 g sample of neon gas has 1700 J of thermal...Ch. 20 - Prob. 27EAPCh. 20 - A 6.0 m × 8.0 m × 3.0 m room contains air at 20°C....Ch. 20 - Prob. 29EAPCh. 20 - Prob. 30EAPCh. 20 - .0 mol of a monatomic gas interacts thermally with...Ch. 20 - Prob. 32EAPCh. 20 - A rigid container holds 0.20 g of hydrogen gas....Ch. 20 - Prob. 34EAPCh. 20 - .0 mol of monatomic gas A interacts with 3.0 mol...Ch. 20 - Two containers hold several balls. Once a second,...Ch. 20 - Prob. 37EAPCh. 20 - From what height must an oxygen molecule fall in a...Ch. 20 - Dust particles are 10m in diameter. They are...Ch. 20 - Prob. 40EAPCh. 20 - Photons of light scatter off molecules, and the...Ch. 20 - Prob. 42EAPCh. 20 - Prob. 43EAPCh. 20 - a. Find an expression for the vrms of gas...Ch. 20 - Equation 20.3 is the mean free path of a particle...Ch. 20 - Uranium has two naturally occurring isotopes. 238U...Ch. 20 - On earth, STP is based on the average atmospheric...Ch. 20 - .0 × l023 nitrogen molecules collide with a 10 cm2...Ch. 20 - Prob. 49EAPCh. 20 - Prob. 50EAPCh. 20 - A 100 cm3 box contains helium at a pressure of 2.0...Ch. 20 - 2.0 g of helium at an initial temperature of 300 K...Ch. 20 - Prob. 53EAPCh. 20 - Scientists studying the behavior of hydrogen at...Ch. 20 - Prob. 55EAPCh. 20 - Prob. 56EAPCh. 20 - In the discussion following Equation 20.43 it was...Ch. 20 - Prob. 58EAPCh. 20 - n moles of a diatomic gas with Cv= 52 has initial...Ch. 20 - The 2010 Nobel Prize in Physics was awarded for...Ch. 20 - Prob. 61EAPCh. 20 - Prob. 62EAPCh. 20 - 63. moles of a monatomic gas and moles of a...Ch. 20 - Prob. 64EAPCh. 20 - 65. An experiment you're designing needs a gas...Ch. 20 - 66. Consider a container like that shown in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cylinder contains a mixture of helium and argon gas in equilibrium at 150C. (a) What is the average kinetic energy for each type of gas molecule? (b) What is the rms speed of each type of molecule?arrow_forwardIn the text, it was shown that N/V=2.681025m3 for gas at STP. (a) Show that this quantity is equivalent to N/V=2.681019cm3, as stated. (b) About how many atoms are mere in one m3 (a cubic micrometer) at STP? (c) What does your answer to part (b) imply about the separation of Mama and molecules?arrow_forwardA person is in a closed room (a racquetball court) with v=453 m3 hitting a ball (m 42.0 g) around at random without any pauses. The average kinetic energy of the ball is 2.30 J. (a) What is the average value of vx2 ? Does it matter which direction you take to be x ? (b) Applying the methods of this chapter, find the average pressure on the walls? (c) Aside from the presence of only one "molecule" in this problem, what is the main assumption in Pressure, Temperature, and RMS Speed that does not apply here?arrow_forward
- (a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forwardThe density of air in the Earths atmosphere decreases according to the function =0eh/h0, where 0=1.20kg/m3 is the density of air at sea level and h0 is the scale height of the atmosphere, with an average value of 7640 m. What is the maximum payload that a balloon filled with 2.50 103 m3 of helium (He=0.179kg/m3) can lift to an altitude of 10.0 km?arrow_forwardAn air bubble starts rising from the bottom of a lake. Its diameter is 3.60 mm at the bottom and 4.00 mm at the surface. The depth of the lake is 2.50 m, and the temperature at the surface is 40.0C. What is the temperature at the bottom of the lake? Consider the atmospheric pressure to be 1.01 105 Pa and the density of water to be 1.00 103 kg/m3. Model the air as an ideal gas. 53. Use the ideal gas law for the bottom (point 1) and the surface (point 2) of the lake. At the surface, the pressure is atmospheric pressure. However, at the bottom it is equal to to the sum of the atmospheric pressure and the pressure due to 2.50 m column of water. P2=1.01105PaP1=P2+WghWP1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m) Use the ideal gas law (Eq. 19.17). T1=P1V1P2V2T2 The volume ratio at the bottom and top of the lake can be calculated with the diameters given. V1V2=43r1343r23=(1.82.0)3 T1=P1P2(V1V2)T2T1=1.01105Pa+(1.00103kg/m3)(9.81m/s2)(2.50m)1.01105Pa(1.802.00)3(40.0+273.15K)T1=284Karrow_forward
- (a) What is me gauge pressure in a 25.0C car tire containing 3.60 mol of gas in a 30.0 L volume? (b) What will its gauge pressure be if you add 1.00 L of gas originally at atmospheric pressure and 25.0C ? Assume the temperature returns to 25.0C and me volume remains constant.arrow_forwardFor the exam scores given in Table P20.60, find the average score and the rms score. Table P20.60arrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forward
- Suppose you have argon atoms in a sealed and isolated container, and they all have the same speed of 4.2 x 10² m/s. The atoms then collide with one another until the Maxwell-Boltzmann distribution is established. a. What is the temperature of the gas at equilibrium? b. What is the temperature at equilibrium if you would replace half of the argon atoms by helium atoms?arrow_forwardM2arrow_forwardThe pressure of a gas in a closed container is directly proportional to the volume at constant temperature. a. True O b. Falsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY