Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 44AP
(a)
To determine
The method due to which the gas centrifuge is used to separate particles of different mass.
(b)
To determine
To show: The density of the particle as a function of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Compare the average kinetic energy K;TRT of air molecules to the difference
in gravitational energies, AU = mgz, at the top and bottom of a room, of height
z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air
in the room fall to the floor? What could you do to make it fall? b) This time
calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the
ground and if so, why?
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ? = 2.67 × 106 g/m3 and volume V =1.71 × 1012 m3. Recall that the universal gravitational constant is G = 6.67 × 10-11 (Nm2)/(kg2).
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing
experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various
initial speeds. With what minimum initial speed vesc will the rocks need to be thrown in order for them never to "fall" back to
the asteroid? Assume that the asteroid is approximately spherical, with an average density p
3.06 x 106 g/m³ and volume
V = 3.32 x 1012 m³. Recall that the universal gravitational constant is G :
6.67 x 10-11 N-m²/kg².
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 20.1 - Two containers hold an ideal gas at the same...Ch. 20.2 - (i) How does the internal energy of an ideal gas...Ch. 20.3 - Prob. 20.3QQCh. 20.3 - Prob. 20.4QQCh. 20 - A spherical balloon of volume 4.00 103 cm3...Ch. 20 - A spherical balloon of volume V contains helium at...Ch. 20 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 20 - Prob. 4PCh. 20 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 20 - Prob. 6P
Ch. 20 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 20 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 20 - Calculate the change in internal energy of 3.00...Ch. 20 - Prob. 10PCh. 20 - In a constant-volume process, 209 J of energy is...Ch. 20 - A vertical cylinder with a heavy piston contains...Ch. 20 - Prob. 13PCh. 20 - A certain molecule has f degrees of freedom. Show...Ch. 20 - Prob. 15PCh. 20 - Why is the following situation impossible? A team...Ch. 20 - You and your younger brother are designing an air...Ch. 20 - During the compression stroke of a certain...Ch. 20 - Air in a thundercloud expands as it rises. If its...Ch. 20 - Prob. 20PCh. 20 - Air (a diatomic ideal gas) at 27.0C and...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - Prob. 27APCh. 20 - Prob. 28APCh. 20 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 20 - Prob. 30APCh. 20 - The Earths atmosphere consists primarily of oxygen...Ch. 20 - Prob. 32APCh. 20 - Prob. 33APCh. 20 - In a cylinder, a sample of an ideal gas with...Ch. 20 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 20 - Prob. 36APCh. 20 - Prob. 37APCh. 20 - Prob. 38APCh. 20 - Prob. 39APCh. 20 - Prob. 40APCh. 20 - Prob. 41APCh. 20 - On the PV diagram for an ideal gas, one isothermal...Ch. 20 - Prob. 43APCh. 20 - Prob. 44APCh. 20 - Prob. 45CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing experiments, one of their tasks is to demonstrate the concept of the escape speed by throwing rocks straight up at various initial speeds. With what minimum initial speed ?esc will the rocks need to be thrown in order for them never to "fall" back to the asteroid? Assume that the asteroid is approximately spherical, with an average density ?=2.93×106 g/m3 and volume ?=1.94×1012 m3 . Recall that the universal gravitational constant is ?=6.67×10-11 N·m2/kg2 .vesc = ? m/sarrow_forwardYou are on an interstellar mission from the Earth to the 8.7 light-years distant star Sirius. Your spaceship can travel with 70% the speed of light and has a cylindrical shape with a diameter of 6 m at the front surface and a length of 25 m. You have to cross the interstellar medium with an approximated density of 1 hydrogen atom/m3 . (a) Calculate the time it takes your spaceship to reach Sirius. (b) Determine the mass of interstellar gas that collides with your spaceship during the mission. Note: Use 1.673 × 10−27 kg as proton mass. Considering the effect of time dilation c)how many years will have passed from your perspective?d) at what earth date will you arrive to earth? ( your spaceship launches in june 2020 and returns back to earth directly from sirius)arrow_forwardQ.1:: 12 kg of air per minute is delivered by a centrifugal air compressor It enters the compressor at a velocity of 12 m/s with a pressure of 1 bar and specific volume of 0. 5 m²/kg and leaves at a velocity of 90 m/s with a pressure of 8 bar and specific volume of 0.14 m/kg. The increase in enthalpy of air passing through the compressor is (hz-h: = 150 kJ/kg) and heat loos to the surroundings at a rate of 700 kJ/min. Assume the inlet and discharge line are at the same level. Answer the following: a. What are the main assumptions b. Calculate the power required to drive the compressor, in kW c. Calculate the ratio of inlet and outlet pipe diameter? Air out Boundary Centrifugal compressor di Air inarrow_forward
- An Isotope Separator. Hydrogen has three isotopes 'H (m1 = mp),arrow_forwardWhich would produce the greatest microtides in your body, the Earth, the Moon, or the Sun? Why?arrow_forwardWhich of the following assumptions is incorrect according to the Kinetic Molecular Theory of gases? All collisions are perfectly inelastic. The particles move rapidly in constant random motion. A gas is composed of particles usually molecules or atoms. The intermolecular forces of attraction/repulsion among gas particles are negligible.arrow_forwardIn the simple kinetic theory of a gas we discussed in class, the molecules are assumed to be point-like objects (without any volume) so that they rarely collide with one another. In reality, each molecule has a small volume and so there are collisions. Let's assume that a molecule is a hard sphere of radius r. Then the molecules will occasionally collide with each other. The average distance traveled between two successive collisions (called mean free path) is λ = V/(4π √2 r2N) where V is the volume of the gas containing N molecules. Calculate the mean free path of a H2 molecule in a hydrogen gas tank at STP. Assume the molecular radius to be 10-10 a) 2.1*10-7 m b) 4.2*10-7 m c) none of these.arrow_forwardIn this problem we will deal with simple thermodynamics model of a black hole. Assume that the properties of a black hole depend only on the mass of the black hole. (a) One characteristic of a black hole is the area of its event horizon. Roughly speaking, the event horizon is the boundary of the black hole. Inside this boundary, the gravity is so strong that even light cannot emerge from the region enclosed by the boundary. We shall write A = G°c®m°. Use dimensional analysis to find a, ß , and y. (b) One quantities in thermodynamics is entropy (S), that measure the disorder of a system. The relationship between entropy S, energy E and temperature 0 of a system is given as follow: = . For black holes, Bekenstein propose that the entropy is proportional the area of the black hole's event horizon S = nA, where n depends on c, k, G and h. Using dimensional analysis determine 7. (c) With the previous results, determine the temperature of the black hole, as a function of the mass. The energy…arrow_forwardThe force between two inert gas atoms is often described by a function of the form F = [Ax^−13 + Bx^−7] ex where A and B are positive constants and x is the distance between the atoms. The origin has been placed at the location of one of the atoms, and F is the force on the other atom; ex points from the origin towards the other atom. Answer in terms of A and B. (a) Plot the component of F as a function of x. For which values of x is this an attractive force, and for what values is this a repulsive force? (b) What is the equilibrium separation? (c) What is the work done if the atoms are moved from their equilibrium separation to a very large distance apart? (d) Is this a conservative force? If yes, show it! If no, explain. (e) Find the potential energy function (if applicable). Plot this function versus x. (f) Explain the relation between your answers to parts b and d.arrow_forwardConsider nitrogen gas in a container at temperature T = 245 K. A molecule’s average kinetic energy is Kavg=3/2kBT. Calculate the momentum magnitude p of a nitrogen molecule having this kinetic energy. The momentum magnitude p of the nitrogen molecule is ______kg⋅m/skg⋅m/s.arrow_forwardA huge cannon is assembled on an almost airless planet. The planet has a radius of 5 x 10^6 m and a mass of 2.6 x 10^24 kg. The cannon fires a 10 cm radius sphere straight up at 5000 m/s. a) Assuming the planet is completely airless you should calculate what maximum height above the surface the sphere reaches. b) An observation satellite orbits the planet at a height of 1000 km. Does the projectile reach this height? If so what speed does it have as it goes past the satellite? c) Drag on this planet is actually D=0.005 A v2 (a measly 1% of drag on Earth) for the first 100 m ( and zero after that). Estimate or determine how much energy is lost due to this effect? Verbally comment on why it's an estimate.arrow_forwardFor years, the tallest tower in the United States was the Phoenix Shot Tower in Baltimore, Maryland. The shot tower was used from 1828 to1892 to make lead shot for pistols and rifles and molded shot for cannons and other instruments of warfare. Molten lead was dropped from the top of the 234-foot (71.3 meter) tall tower into a vat of water. During its free fall, the lead would form a perfectly spherical droplet and solidify. Determine the time of fall and the speed of a lead shot upon hitting the water at the bottom.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON