Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 15P
(a)
To determine
The factor by which the rms speed of the air has increased.
(b)
To determine
The change in average speed factor if argon replaces air.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two containers hold ideal gases at the same temperature.Container A has twice the volume and half the number of molecules as container B. What is the ratio PA>PB, where PA is the pressure in container A and PB is the pressure in container B?
n = 3.6 moles of an ideal gas are pumped into a chamber of volume V = 0.099 m3.
The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas?
The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?
Problem 5: n = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.094 m3.
Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas?
50% Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 20.1 - Two containers hold an ideal gas at the same...Ch. 20.2 - (i) How does the internal energy of an ideal gas...Ch. 20.3 - Prob. 20.3QQCh. 20.3 - Prob. 20.4QQCh. 20 - A spherical balloon of volume 4.00 103 cm3...Ch. 20 - A spherical balloon of volume V contains helium at...Ch. 20 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 20 - Prob. 4PCh. 20 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 20 - Prob. 6P
Ch. 20 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 20 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 20 - Calculate the change in internal energy of 3.00...Ch. 20 - Prob. 10PCh. 20 - In a constant-volume process, 209 J of energy is...Ch. 20 - A vertical cylinder with a heavy piston contains...Ch. 20 - Prob. 13PCh. 20 - A certain molecule has f degrees of freedom. Show...Ch. 20 - Prob. 15PCh. 20 - Why is the following situation impossible? A team...Ch. 20 - You and your younger brother are designing an air...Ch. 20 - During the compression stroke of a certain...Ch. 20 - Air in a thundercloud expands as it rises. If its...Ch. 20 - Prob. 20PCh. 20 - Air (a diatomic ideal gas) at 27.0C and...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - Prob. 27APCh. 20 - Prob. 28APCh. 20 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 20 - Prob. 30APCh. 20 - The Earths atmosphere consists primarily of oxygen...Ch. 20 - Prob. 32APCh. 20 - Prob. 33APCh. 20 - In a cylinder, a sample of an ideal gas with...Ch. 20 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 20 - Prob. 36APCh. 20 - Prob. 37APCh. 20 - Prob. 38APCh. 20 - Prob. 39APCh. 20 - Prob. 40APCh. 20 - Prob. 41APCh. 20 - On the PV diagram for an ideal gas, one isothermal...Ch. 20 - Prob. 43APCh. 20 - Prob. 44APCh. 20 - Prob. 45CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A gas is at 200 K. If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (a) 283 K (b) 400 K (c) 566 K (d) 800 K (e) 1 130 Karrow_forward(a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forwardA sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forward
- A cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardYou are working for an automobile tire company. Your supervisor is studying the effects of molecules striking the inner surface of the tire due to their thermal motion. He gives you the following data from a recent experiment. The air in a tire on a parked car was measured to have a gauge pressure of Pi = 1.65 atm on a day when the temperature was T = 6.5C. The car was then driven for a while and then measurements were taken again. The gauge pressure in the tire was then Pf = 1.95 atm and the interior volume of the tire had increased by 5.00%. (a) Your supervisor asks you to determine by what factor the rms speed of the air molecules had increased from the first measurement In the second. (b) He also hints at a proposal he is going to make to replace air in tires with argon. Will this change the factor by which the average speed of the molecules changes in the conditions described?arrow_forwardA cylindrical tank has a tight-fitting piston that allows the volume of the gas to be changed. The tank contains 0.110 m3 of air at a pressure of 0.355 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.390 m3. If the temperature remains constant, what is the final value of the pressure?arrow_forward
- The number density in a container of neon gas is 5.40 x 1025 m³. The atoms are moving with an rms speed of 665 m/s. What is the pressure inside the container? Express your answer with the appropriate units. ► View Available Hint(s) p= Submit Part B Value T = μA Submit What is the temperature inside the container? Express your answer with the appropriate units. ► View Available Hint(s) μÀ Value Units 6 B Units ? px ?arrow_forwardTwo containers of equal volume each hold samples of the same ideal gas. Container A has twice as many molecules as container B. If the gas pressure is the same in the two containers, the correct statement regarding the absolute temperatures TA and TB in containers A and B, respectively, is TA = TB TA = 2TB %3D TA = TB/2 TA= 1B//2 TA= TB/4 %3Darrow_forwardA sample of an ideal gas is in a tank of constant volume. The sample gains heat energy and its temperature changes from 300 K to 900 K. If v, is the average speed of the gas molecules before absorption of heat and v2 the average speed after absorption of heat, what is the ratio v2/v, ? A 3/2 B V3 30. D 1/3arrow_forward
- A cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains 0.110 m3 of air at a pressure of 3.40 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.390 m3. If the temperature remains constant, what is the final value of the pressure?arrow_forwardHelium atoms have a mass of 4u and oxygen molecules have a mass of 32u, where u is defined as an atomic mass unit (u=1.660540×10−27 kg). Compare a gas of helium atoms to a gas of oxygen molecules. Part A: At what gas temperature TE would the average translational kinetic energy of a helium atom be equal to that of an oxygen molecule in a gas of temperature 300 K? Part B: At what gas temperature Trms would the root-mean-square (rms) speed of a helium atom be equal to that of an oxygen molecule in a gas at 300 K?arrow_forwardStandard temperature and pressure (STP) is defined as a temperature of 0 °C and a pressure of 101.3 kPa. What is the volume occupied by one mole of an ideal gas at STP?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY