Air (a diatomic ideal gas) at 27.0°C and atmospheric pressure is drawn into a bicycle pump that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm. The downstroke adiabatically compresses the air, which readies a gauge pressure of 8.00 × 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. (a) What is the initial volume of the air in the pump? (b) What is the number of moles of air in the pump? (c) What is the absolute pressure of the compressed air? (d) What is the volume of the compressed air? (c) What is the temperature of the compressed air? (f) What is the increase in internal energy of the gas during the compression? What If? The pump is made of steel that is 2.00 mm thick. Assume 4.00 cm of the cylinder’s length is allowed to come to thermal equilibrium with the air. (g) What is the volume of steel in this 4.00-cm length? (h) What is the mass of steel in this 4.00-cm length? (i) Assume the pump is compressed once. After the adiabatic expansion,
(a)
The initial volume of the air in the pump.
Answer to Problem 21P
The initial volume of the air in the pump is
Explanation of Solution
Given information:Initial temperature for diatomic gasis
Write the expression to calculate the radius of the pump.
Here,
Formula to calculate the initial volume of the air in the pump.
Here,
Substitute
Substitute
Thus, the initial volume of the air in the pump is
Conclusion:
Therefore, the initial volume of the air in the pump is
(b)
The number of moles of air in the pump.
Answer to Problem 21P
The number of moles of air in the pump is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the number of moles of air in the pump.
Here,
The value of atmospheric pressure for diatomic gas is
Substitute
Thus, the number of moles of air in the pump is
Conclusion:
Therefore, the number of moles of air in the pump is
(c)
The absolute pressure of the compressed air.
Answer to Problem 21P
The absolute pressure of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the absolute pressure of the compressed air.
Here,
Substitute
Thus, the absolute pressure of the compressed air is
Conclusion:
Therefore, the absolute pressure of the compressed air is
(d)
The volume of the compressed air.
Answer to Problem 21P
The volume of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Write the expression for the adiabatic compression.
Here,
Formula to calculate the volume of the compressed air.
Substitute
Thus, the volume of the compressed air is
Conclusion:
Therefore, the volume of the compressed air is
(e)
The temperature of the compressed air.
Answer to Problem 21P
The temperature of the compressed air is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the temperature of the compressed air.
Here,
Substitute
Thus, the temperature of the compressed air is
Conclusion:
Therefore, the temperature of the compressed air is
(f)
The increase in internal energy of the gas during the compression.
Answer to Problem 21P
The increase in internal energy of the gas during the compression is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
For adiabatic process, the work done on the gas is equal to the change in internal energyof the gas during the compression.
Here,
Write the expression for the change in internal energyof the gas during the compression.
Here,
Write the expression for specific heat at constant volume.
Here,
Equate the three expressions (7),(8) and (9)and re-arrange to get
Formula to calculate the change in temperature of a monatomic ideal gas.
Here,
Substitute
Thus, the change in temperature of a monatomic ideal gas is
Substitute
Thus, the increase in internal energy of the gas during the compression is
Conclusion:
Therefore, the increase in internal energy of the gas during the compression is
(g)
The volume of the steel in this
Answer to Problem 21P
The volume of the steel in this
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the volume of the steel in this
Here,
Write the expression to calculate the square radius of the pump for steel.
Here,
Formula to calculate the outer radius of the pump.
Here,
Substitute
Thus, the outer radius of the pump is
Substitute
Thus, the square radius of the pump for steel is
Substitute
Thus, the volume of the steel in this
Conclusion:
Therefore, the volume of the steel in this
(h)
The mass of the steel in this
Answer to Problem 21P
The mass of the steel in this
Explanation of Solution
Given information:Initial temperature for diatomic gas is
Formula to calculate the mass of the steel in this
Here,
The value of density of the steel is
Substitute
Thus, the mass of the steel in this
Conclusion:
Therefore, the mass of the steel in this
(i)
The increase in temperature of the steel after one compression.
Answer to Problem 21P
The increase in temperature of the steel after one compression is
Explanation of Solution
Given information:Initial temperature for diatomic gas is
After the adiabatic compression, conduction in the part (f) being shared between the gas and the
The work done on the gas is equal to the sum of change in internal energyof the gas during the compression and the heat supplied.
Here,
Write the expression for the heat supplied during the compression.
Here,
The value of specific heat capacity is
Equate the three expressions (8),(9),(16) and (17)and re-arrange to get
Substitute
Thus, the increase in temperature of the steel after one compression is
Conclusion:
Therefore, the increase in temperature of the steel after one compression is
Want to see more full solutions like this?
Chapter 20 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
- A cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forwardLight travels through a vacuum at a speed of 2.998 x 108m/s. Determine the speed of light in the following media: crown glass (n = 1.52)arrow_forward2.62 Collision. The engineer of a passenger train traveling at 25.0 m/s sights a freight train whose caboose is 200 m ahead on the same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the same direction as the passenger train. The engineer of the passenger train immediately applies the brakes, causing a constant acceleration of 0.100 m/s² in a direction opposite to the train's velocity, while the freight train continues with constant speed. Take x = 0 at the location of the front of the passenger train when the engineer applies the brakes. (a) Will the cows nearby witness a collision? (b) If so, where will it take place? (c) On a single graph, sketch the positions of the front of the pas- senger train and the back of the freight train.arrow_forward
- Can I get help with how to calculate total displacement? The answer is 78.3x-4.8yarrow_forward2.70 Egg Drop. You are on the Figure P2.70 roof of the physics building, 46.0 m above the ground (Fig. P2.70). Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your profes- sor's head, where should the profes- sor be when you release the egg? Assume that the egg is in free fall. 2.71 CALC The acceleration of a particle is given by ax(t) = -2.00 m/s² +(3.00 m/s³)t. (a) Find the initial velocity Vox such that v = 1.20 m/s 1.80 m 46.0 marrow_forwardOne has to push down a ball with a force of 470 Newtons in order to hold the ball still, completely submerged under the surface of the water. What is the volume of the styrofoam ball in cubic meters? Use 997 kg/m3 as the density of water, 95 kg/m3 for the density of the styrofoam, and g = 9.8 m/s2.arrow_forward
- The cube is placed in a bucket of water and find that it floats, with 33% of its volume submerged below the surface of the water. What is the density of the mystery material? The material is uniformly distributed throughout the solid cube, with the number of kg/m3.arrow_forward2.82 A ball is thrown straight up from the ground with speed Up. At the same instant, a second ball is dropped from rest from a height H, directly above the point where the first ball was thrown upward. There is no air resistance. (a) Find the time at which the two balls collide. (b) Find the value of H in terms of un, and g such that at the instant when the balls collide, the first ball is at the highest point of its motion.arrow_forwardThe small piston has an area A1=0.033 m2 and the large piston has an area A2= 4.0 m2. What force F2 will the large piston provide if the small piston is pushed down with a force of 15 Newtons with an answer in Newtons?arrow_forward
- 2.23 BIO Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the ac- celeration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an air- bag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forwardPlease solve and answer these problems correctly.Thank you!!arrow_forward2.2. In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x-axis to the release point, what was the bird's average ve- locity in m/s (a) for the return flight and (b) for the whole episode, from leaving the nest to returning?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning