Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
10th Edition
ISBN: 9781337888516
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 7P
In a period of 1.00 s, 5.00 × 1023 nitrogen molecules strike a wall with an area of 8.00 cm2. Assume the molecules move with a speed of 300 m/s and strike the wall head-on in elastic collisions. What is the pressure exerted on the wall? Note: The mass of one N2 molecule is 4.65 × 10−26 kg.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In a period of 1.00 s , 5.00 x 1023 nitrogen molecules strike a wall with an area of 8.00 cm2. Assume the molecules move with a speed of 300 m/s and strike the wall head- on in elastic collisions. What is the pressure exerted on the wall? Note: The mass of one N2 molecule is 4.65 x 10-26 kg
In a period of 1.00 s, 5.00 × 1023 nitrogen molecules strike a wall with an area of 8.00 cm2. Assume the molecules move with a speed of 300 m/s and strike the wall head-on in elastic collisions. What is the pressure exerted on the wall? Note: The mass of one N2 molecule is 4.65 × 10-26 kg.
In a period of 1.0 s, 5.0 x 1023 nitrogen molecules strike a wall of area 8.0 cm2. If the molecules move at 3.00 x 102 m/s and strike the wall head-on in a perfectly elastic collision, find the pressure exerted on the wall. (The mass of one N2 molecule is 4.68 x 10-26 kg.)
Chapter 20 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Ch. 20.1 - Two containers hold an ideal gas at the same...Ch. 20.2 - (i) How does the internal energy of an ideal gas...Ch. 20.3 - Prob. 20.3QQCh. 20.3 - Prob. 20.4QQCh. 20 - A spherical balloon of volume 4.00 103 cm3...Ch. 20 - A spherical balloon of volume V contains helium at...Ch. 20 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 20 - Prob. 4PCh. 20 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 20 - Prob. 6P
Ch. 20 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 20 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 20 - Calculate the change in internal energy of 3.00...Ch. 20 - Prob. 10PCh. 20 - In a constant-volume process, 209 J of energy is...Ch. 20 - A vertical cylinder with a heavy piston contains...Ch. 20 - Prob. 13PCh. 20 - A certain molecule has f degrees of freedom. Show...Ch. 20 - Prob. 15PCh. 20 - Why is the following situation impossible? A team...Ch. 20 - You and your younger brother are designing an air...Ch. 20 - During the compression stroke of a certain...Ch. 20 - Air in a thundercloud expands as it rises. If its...Ch. 20 - Prob. 20PCh. 20 - Air (a diatomic ideal gas) at 27.0C and...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - Prob. 27APCh. 20 - Prob. 28APCh. 20 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 20 - Prob. 30APCh. 20 - The Earths atmosphere consists primarily of oxygen...Ch. 20 - Prob. 32APCh. 20 - Prob. 33APCh. 20 - In a cylinder, a sample of an ideal gas with...Ch. 20 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 20 - Prob. 36APCh. 20 - Prob. 37APCh. 20 - Prob. 38APCh. 20 - Prob. 39APCh. 20 - Prob. 40APCh. 20 - Prob. 41APCh. 20 - On the PV diagram for an ideal gas, one isothermal...Ch. 20 - Prob. 43APCh. 20 - Prob. 44APCh. 20 - Prob. 45CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forward
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardA cylinder that has a 40.0-cm radius and is 50.0 cm deep is filled with air at 20.0C and 1.00 atm (Fig. P10.74a). A 20.0-kg piston is now lowered into the cylinder, compressing the air trapped inside as it takes equilibrium height hi (Fig. P16.74b). Finally, a 25.0-kg dog stands on the piston, further compressing the air, which remains at 20C (Fig. P16.74c). (a) How far down (h) does the piston move when the dog steps onto it? (b) To what temperature should the gas be warmed to raise the piston and dog back to hi?arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forward
- Decades ago, it was thought that huge herbivorous dinosaurs such as Apatosaurus and Brachiosaurus habitually walked on the bottom of lakes, extending their long necks up to the surface to breathe. Brarhiosaurus had its nostrils on the top of its head. In 1977, Knut Schmidt-Nielsen pointed out that breathing would be too much work for such a creature. For a simple model, consider a sample consisting of 10.0 L of air at absolute pressure 2.00 atm, with density 2.40 kg/m3, located at the surface of a freshwater lake. Find the work required to transport it to a depth of 10.3 m, with its temperature, volume, and pressure remaining constant. This energy investment is greater than the energy that can be obtained by metabolism of food with the oxygen in that quantity of air.arrow_forwardAn ideal gas is trapped inside a tube of uniform cross-sectional area sealed at one end as shown in Figure P19.49. A column of mercury separates the gas from the outside. The tube can be turned in a vertical plane. In Figure P19.49A, the column of air in the tube has length L1, whereas in Figure P19.49B, the column of air has length L2. Find an expression (in terms of the parameters given) for the length L3 of the column of air in Figure P19.49C, when the tube is inclined at an angle with respect to the vertical. FIGURE P19.49arrow_forwardA 40.0-g projectile is launched by the expansion of hot gas in an arrangement shown in Figure P12.4a. The cross sectional area of the launch tube is 1.0 cm2, and the length that the projectile travels down the tube after starting from rest is 52 cm. As the gas expands, the pressure varies as shown in Figure P12.4b. The values for the initial pressure and volume are P1 = 11 105 Pa and Vi = 8.0 cm3 while the final values are Pf = 1.0 105 Pa and Vf = 8.0 cm3. Friction between the projectile and the launch tube is negligible, (a) If the projectile is launched into a vacuum, what is the speed of the projectile as it leaves the launch tube? (b) If instead the projectile is launched into air at a pressure of 1.0 105 Pa. what fraction of the work done by the expanding gas in the tube is spent by the projectile pushing air out of the way as it proceeds down tile tube?arrow_forward
- A sealed cubical container 20.0 cm on a side contains a gas with three times Avogadros number of neon atoms at a temperature of 20.0C. (a) Find the internal energy of the gas. (b) Find the total translational kinetic energy of the gas. (c) Calculate the average kinetic energy per atom, (d) Use Equation 10.13 to calculate the gas pressure. (e) Calculate the gas pressure using the ideal gas law (Eq. 10.8).arrow_forwardAn ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of 3, (d) a factor of 1, or (e) a factor of 13? Using the same choices as in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a collision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas?arrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY