EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20.75AP
(a)
To determine
The power radiating from the sun at uniform temperature.
(b)
To determine
The power output of the patch from the sun at non uniform temperature.
(c)
To determine
The comparison of the answers of part (a) and (b).
(d)
To determine
The average temperature of the patch.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During periods of high activity, the Sun has more sunspots than usual. Sunspots are cooler than the rest of the luminous layer of the Sun’s atmosphere (the photosphere). Paradoxically, the total power output of the active Sun is not lower than average but is the same or slightly higher thanaverage. Work out the details of the following crude model of this phenomenon. Consider a patch of the photosphere with an area of 5.10 × 1014 m2. Its emissivity is 0.965. (a) Find the power it radiates if its temperature is uniformly 5 800 K, corresponding to the quiet Sun. (b) To represent a sunspot, assume 10.0% of the patch area is at 4 800 K and the other 90.0% is at 5 890 K. Find the power output of the patch. (c) State how the answer to part (b) compares with the answer to part (a). (d) Find the average temperature of the patch. Note that this cooler temperature results in a higher power output.
At a certain location, the solar power per unit area reaching Earth’s surface is 200 W/m2, averaged over a 24-hour day. If the average power requirement in your home is 3 kW and you can convert solar power to electric power with 10% efficiency, how large a collector area will you need to meet all your household energy requirements from solar energy? (Will a collector fit in your yard or on your roof?)
At a certain location, the solar power per unit area reaching Earth's surface is 200 W/ m^2, averaged over a 24-hour day. If the average power requirement in your home is 3 kW and you can convert solar power to electric power with 10 % efficiency, how large a collector area will you need to meet all your household energy requirements from solar energy? (Will a collector fit in your yard or on your roof? ).
Chapter 20 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 20 - Prob. 20.1QQCh. 20 - Suppose the same process of adding energy to the...Ch. 20 - Prob. 20.3QQCh. 20 - Characterize the paths in Figure 19.12 as...Ch. 20 - Prob. 20.5QQCh. 20 - An ideal gas is compressed to half its initial...Ch. 20 - A poker is a stiff, nonflammable rod used to push...Ch. 20 - Assume you are measuring the specific heat of a...Ch. 20 - Prob. 20.4OQCh. 20 - Prob. 20.5OQ
Ch. 20 - Ethyl alcohol has about one-half the specific heat...Ch. 20 - The specific heat of substance A is greater than...Ch. 20 - Beryllium has roughly one-half the specific heat...Ch. 20 - Prob. 20.9OQCh. 20 - A 100-g piece of copper, initially at 95.0C, is...Ch. 20 - Prob. 20.11OQCh. 20 - If a gas is compressed isothermally, which of the...Ch. 20 - Prob. 20.13OQCh. 20 - If a gas undergoes an isobaric process, which of...Ch. 20 - Prob. 20.15OQCh. 20 - Prob. 20.1CQCh. 20 - You need to pick up a very hot cooking pot in your...Ch. 20 - Prob. 20.3CQCh. 20 - Prob. 20.4CQCh. 20 - Prob. 20.5CQCh. 20 - In 1801, Humphry Davy rubbed together pieces of...Ch. 20 - Prob. 20.7CQCh. 20 - Prob. 20.8CQCh. 20 - Prob. 20.9CQCh. 20 - When camping in a canyon on a still night, a...Ch. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 20.12CQCh. 20 - Prob. 20.1PCh. 20 - Consider Joules apparatus described in Figure...Ch. 20 - Prob. 20.3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - What mass of water at 25.0C must be allowed to...Ch. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - In cold climates, including the northern United...Ch. 20 - A 50.0-g sample of copper is at 25.0C. If 1 200 J...Ch. 20 - An aluminum cup of mass 200 g contains 800 g of...Ch. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 20 - An electric drill with a steel drill bit of mass m...Ch. 20 - An aluminum calorimeter with a mass of 100 g...Ch. 20 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 20 - Two thermally insulated vessels are connected by a...Ch. 20 - A 50.0-g copper calorimeter contains 250 g of...Ch. 20 - Prob. 20.17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - A 75.0-g ice cube at 0C is placed in 825 g of...Ch. 20 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 20 - Steam at 100C is added to ice at 0C. (a) Find the...Ch. 20 - A 1.00-kg Mock of copper at 20.0C is dropped into...Ch. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 20.24PCh. 20 - An ideal gas is enclosed in a cylinder with a...Ch. 20 - Prob. 20.26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - (a) Determine the work done on a gas that expands...Ch. 20 - An ideal gas is taken through a quasi-static...Ch. 20 - A gas is taken through the cyclic process...Ch. 20 - Consider the cyclic process depicted in Figure...Ch. 20 - Why is the following situation impossible? An...Ch. 20 - A thermodynamic system undergoes a process in...Ch. 20 - A sample of an ideal gas goes through the process...Ch. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 20.37PCh. 20 - One mole of an ideal gas does 3 000 J of work on...Ch. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - In Figure P19.22, the change in internal energy of...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - A glass windowpane in a home is 0.620 cm thick and...Ch. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - A student is trying to decide what to wear. His...Ch. 20 - The surface of the Sun has a temperature of about...Ch. 20 - The tungsten filament of a certain 100-W lightbulb...Ch. 20 - At high noon, the Sun delivers 1 000 W to each...Ch. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 20.50PCh. 20 - A copper rod and an aluminum rod of equal diameter...Ch. 20 - A box with a total surface area of 1.20 m2 and a...Ch. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - At our distance from the Sun, the intensity of...Ch. 20 - A bar of gold (Au) is in thermal contact with a...Ch. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - A gas expands from I to Fin Figure P20.58 (page...Ch. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Liquid nitrogen has a boiling point of 77.3 K and...Ch. 20 - An aluminum rod 0.500 m in length and with a cross...Ch. 20 - Prob. 20.62APCh. 20 - Prob. 20.63APCh. 20 - Prob. 20.64APCh. 20 - Prob. 20.65APCh. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - On a cold winter day. you buy roasted chestnuts...Ch. 20 - Prob. 20.68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 20.70APCh. 20 - A 40.0-g ice cube floats in 200 g of water in a...Ch. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Review. A 670-kg meteoroid happens to be composed...Ch. 20 - Prob. 20.74APCh. 20 - Prob. 20.75APCh. 20 - Prob. 20.76APCh. 20 - Water in an electric teakettle is boiling. The...Ch. 20 - Prob. 20.78APCh. 20 - Prob. 20.79APCh. 20 - A student measures the following data in a...Ch. 20 - Consider the piston cylinder apparatus shown in...Ch. 20 - A spherical shell has inner radius 3.00 cm and...Ch. 20 - Prob. 20.83CPCh. 20 - (a) The inside of a hollow cylinder is maintained...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 400 kg satellite is in a circular orbit at an altitude of 425 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 1.80 km/s. How much energy was transformed into internal energy by means of air friction? Need Help? Read Itarrow_forwardA gas expands from I to F in the figure below. The energy added to the gas by heat is 276 J when the gas goes from I to F along the diagonal path. A pressure-volume graph consists of points and line segments plotted on a coordinate plane, where the horizontal axis is V (liters)and the vertical axis is P (atm). Three points are plotted: point I at (2, 4) point A at (4, 4) point F at (4, 1) Line segments connect the three points to form a triangle. Arrows along the line segments point from I to A, from A to F, and from I to F. (a) What is the change in internal energy of the gas? J (b) How much energy must be added to the gas by heat along the indirect path IAF?arrow_forwardA person uses a Nissan Leaf to commute from home to work 6.0 miles each way in a city (5 days a week, 48 weeks a year). This car runs 124 miles per gallon equivalent. Assume that 1 gallon of gasoline is equivalent to 33 kWh of energy. Also, assume that the Nissan Leaf is powered entirely by coal-generated electricity with a carbon footprint of 1.1 kg of CO2 per kWh. What is the CO2 emission in kg/year? A. 843.097 kg CO2/year B. 1.296*10^7 kg CO2/year C. 421.548 kg CO2/year D. 0.77 kg CO2/yeararrow_forward
- Consider the thermodynamic process, A->B->C->A shown above. The heat absorbed during A->B is 591J. If the change in internal energy during B->C is 4146J, What is the change in internal energy in SI units during C->A? Express only the number of your answer with 4 significant figures.arrow_forwardA heat engine has a solar collector receiving 600 Btu/h per square foot, inside which a transfer medium is heated to 800 R. The collected energy powers a heat engine that rejects heat at 100 F. If the heat engine should deliver 8500 Btu/h, what is the minimum size (area) of the solar collector?arrow_forwardHow is the distance from the sun for planets in our solar system related to the mean temperature of each planet? To find out, a scatterplot that relates the natural log of the distance of each planet (including Pluto) from the sun in millions of miles and the natural log of the mean planetary temperature in Kelvin was created. In(Temperature) vs. In(Distance) 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 4.8 4.6 4.4 4.2 4 4 6 7 8. In(Distance) Predictor Coef 7.9009 SE Coef P Conatant 0.4381 18.03 0.000 In Distance -0.4536 0.0706 -6.42 0.004 s = 0.3446 R-Sq = 85.5 R-8q (adj) = 83.2% Based on the scatterplot and computer output, a reasonable estimate of mean temperature in Kelvin for Saturn, which is 886.7 million miles away from the sun is: O 4.822 degrees Kelvin because ý = -0.4536(In 886.7) + 7.9009 = 4.822. O 124.2 degrees Kelvin because in y = -0,4536(in 886,7) + 7.9009 =4,822 and e4.822 = 124.2. O 709.0 degrees Kelvin because In y = - 0.4536(log 886.7) + 7.9009 =6.564 and e6.564 = 709.0. O…arrow_forward
- A hot water heater in a residential home runs for an average of 3.2 hours per day with a heat energy input of 3.7 kW. What would be the annual cost for hot water in this home using a gas hot water heater if the cost of natural gas is $0.33/m3? The gas water heater can get 23 MJ of energy from 1 m3 of natural gas. [round your final answer to zero decimal places]?arrow_forwardConsider a room that is initially at the outdoor temperature of 20°C. The room contains a 40-W lightbulb, a 110-W TV set, a 300-W refrigerator, and a 1200-W iron. Assuming no heat transfer through the walls, determine the rate of increase of the energy content of the room when all of these electric devices are on.arrow_forwardConsider a 24-kW hooded electric open burner in an area where the unit costs of electricity and natural gas are $0.10/kWh and $1.20/therm (1 therm = 105,500 kJ), respectively. The efficiency of open burners can be taken to be 73 percent for electric burners and 38 percent for gas burners. Determine the rate of energy consumption and the unit cost of utilized energy for both electric and gas burners.arrow_forward
- You push a 33-kg table across a 6.2-m-wide room. In the process, 1.5 kJ of mechanical energy gets converted to internal energy of the table/floor system. What's the coefficient of kinetic friction between the table and floor?arrow_forwardA gas expands from I to F in the figure below. The energy added to the gas by heat is 422 J when the gas goes from I to F along the diagonal path. Three paths are plotted on a PV diagram, which has a horizontal axis labeled V (liters), and a vertical axis labeled P (atm). The green path starts at point I (2,4), extends vertically down to point B (2,1), then extends horizontally to point F (4,1). The blue path starts at point I (2,4), and extends down and to the right to end at point F (4,1). The orange path starts at point I (2,4), extends horizontally to the right to point A (4,4), then extends vertically down to end at point F (4,1). (a) What is the change in internal energy of the gas? J(b) How much energy must be added to the gas by heat for the indirect path IAF to give the same change in internal energy? Jarrow_forwardThe sun generates 1kw/m2 when used as a source for solar collectors. A collector with an area of 1m2 heat water. The flow rate is 3.0 liters/min. What is the temperature rise in water? The specific heat of water is 4200 J/kg . 0Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning